Power Beam Processing of Stainless Steels

Article Preview

Abstract:

Stainless steels are one of the versatile materials available in five grades viz., austenitic, ferritic, martensitic, duplex stainless steels and precipitation hardenable variety, having applications in various industrial sectors covering thermal power plants, nuclear, fertilizer, urea processing plants, cryogenic industries, aerospace & defence, etc. Each grade of stainless steels has its own unique characteristics in terms of strength, corrosion resistance, hardening behavior etc. Power beam processing using lasers or electron beam can be effectively utilized to process almost all the grades of stainless steels to enhance the performance for intended application. The non-contact and autogenous nature of the process coupled with precise and low heat input processing offers greater benefits compared to processing with conventional processes. This paper describes the application and advantages of power beam processing of different grades of stainless steels. Keywords: laser processing, electron beam processing, stainless steels, welding, cladding, hardening.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

332-339

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] ASM speciality handbook, stainless steels, Metallurgy and properties of wrought stainless steels, ASM International, Materials park, OH.

Google Scholar

[2] M. Sireesha, V. Shankar. Shaju K. Albert, S. Sundaresan, Microstructural features of dissimilar welds between 316LN austenitic stainless steel and alloy 800, Materials science and engineering A (2000) 74-82.

DOI: 10.1016/s0921-5093(00)00969-2

Google Scholar

[3] H. Naffakh, M. Shamanian, F. Ashrafizadeh, Dissimilar welding of AISI 310 austenitic stainless steel to nickel-based alloy Inconel 657, Journal of materials processing technology (2009).

DOI: 10.1016/j.jmatprotec.2008.08.019

Google Scholar

[4] C. Garcia, M.P. de Tiedra, Y. Blanco, O. Martin, F. Martin, Intergranular corrosion of welded joints of austenitic stainless steels studied by using an electrochemical minicell, Corrosion science 50 (2008) 2390-2397.

DOI: 10.1016/j.corsci.2008.06.016

Google Scholar

[5] K. Shanmugam, A.K. Lakshminarayanan, V. Balasubramanian, Effect of weld metal properties on fatigue crack growth behavior of gas tungsten arc welded AISI 409M grade ferritic stainless steel joints, International journal of pressure vessels and piping 86 (2009).

DOI: 10.1016/j.ijpvp.2009.02.002

Google Scholar

[6] J.C. Lippold, D.J. Kotecki, Welding metallurgy and weldability of stainless steels, USA, (2005).

Google Scholar

[7] V. Muthupandi, P. Bala Srinivasan, V. Shankar, S.K. Seshadri, S. Sundaresan, Effect of nickel and nitrogen addition on the microstructure and mechanical properties of power beam processes duplex stainless steel, Materials letters 59 (2005).

DOI: 10.1016/j.matlet.2005.03.010

Google Scholar

[8] B.S. Yilbas, M. Sami, J. Nickel, A. Coban, S.A.M. Said, Introduction into the electron beam welding of austenitic 321-type stainless steel, Journal of material processing technology (1998) 13-20.

DOI: 10.1016/s0924-0136(97)00485-8

Google Scholar

[9] Paulraj Sathiya, M.Y. Abdul Jaleel, B. Shanmugarajan, (2012) Analysis of metallurgical and mechanical properties of laser welded super austenitic stainless steel, Journal of Engineering, Design and Technology (2012) 110 – 127.

DOI: 10.1108/17260531211211917

Google Scholar

[10] D. harish Kumar, T. Sakthivel, M. Nanda Gopal, K.S. Chandravathi, K. Laha, S.K. Albert, Hemanth Kumar, B. Shanmugarajan, A. Somi Reddy, Journal of Materials Science Research; (2013).

Google Scholar

[11] Hee Seon Bang, Han Sur Bang, You Chul Kim, Ik Hyun Oh, A study on mechanical and microstructure characteristics of the STS304L butt joints using hybrid CO2 laser-gas metal arc welding, Materials and Design 32 (2011) 2328-2333.

DOI: 10.1016/j.matdes.2010.12.039

Google Scholar

[12] P. Sathiya, Mahendra Kumar Mishra, B. Shanmugarajan, Effect of shielding gases on microstructure and mechanical properties of super austenitic stainless steel by hybrid welding, Materials and Design 33 (2012) 203-212.

DOI: 10.1016/j.matdes.2011.06.065

Google Scholar

[13] C.Y. Cui, X.G. Cui, Y.K. Zhang, Q. Zhao J.Z. Lu, J.D. Hu, Y.M. Wang, Microstructure and corrosion behaviour of the AISI 304 stainless steel after Nd: YAG pulsed laser surface melting, Surface & Coatings Technology 206 (2011) 1146–1154.

DOI: 10.1016/j.surfcoat.2011.08.013

Google Scholar

[14] C.Y. Kwok, H.C. Man, F.T. Cheng, Cavitation and pitting corrosion of laser surface melted stainless steels, Surface and Coatings Technology 99 (1998) 295-304.

DOI: 10.1016/s0257-8972(97)00624-5

Google Scholar

[15] C.T. Kwok, K.H. Lo, W.K. Chan, F.T. Cheng, H.C. Man, Effect of laser surface melting on intergranular corrosion behaviour of aged austenitic and duplex stainless steels, Corrosion Science 53 (2011) 1581–1591.

DOI: 10.1016/j.corsci.2011.01.048

Google Scholar

[16] K. Zhang, J. Zou, T. Grosdidier, C. Dong, D. yang, Improved pitting corrosion resistance of AISI 316L stainless steel treated by high current pulsed electron beam, Surface & Coatings Technology 201 (2006) 1393–1400.

DOI: 10.1016/j.surfcoat.2006.02.008

Google Scholar

[17] C.T. Kwok, F.T. Cheng, H.C. Man, Laser surface modification of UNS S31603 stainless steel using NiCrSiB alloy for enhancing cavitation erosion resistance, Surface and Coatings Technology 107 (1998) 31–40.

DOI: 10.1016/s0257-8972(98)00549-0

Google Scholar

[18] A.K. Lakshminarayanan, V. Balasubramanian, G. Madhusudhan Reddy, On the fatigue behaviour of electron beam and gas tungsten arc weldments of 409M grade ferritic stainless steel, Materials and Design 35 (2012) 760–769.

DOI: 10.1016/j.matdes.2011.10.010

Google Scholar

[19] M. Tullmin, F.P.A. Robinson, C.A.O. Henning, A. Strauss, J. Le. Grange, Properties of laser-welded and electron beam welded ferritic stainless steel, Journal of the south African institute of mining and metallurgy (1989) 243-249.

Google Scholar

[20] B. Shanmugarajan, J.K. Sarin Sundar, Ravi Bathe, Shambavi Shukla, G. Padmanabham, Laser Welding – A productive tool for manufacturing, Proceedings of WPQ (2007).

Google Scholar

[21] H. Baghjari, S.A.A. Akbari Mousavi, Effects of pulsed Nd: YAG laser welding parameters and subsequent post-weld heat treatment on microstructure and hardness of AISI 420 stainless steels Materials and Design 43 (2013) 1–9.

DOI: 10.1016/j.matdes.2012.06.027

Google Scholar

[22] A. Rajasekhar, G. Madhusudhan Reddy, T. Mohandas, V.S.R. Murti, Influence of austenizing temperature on microstructure and mechanical properties of AISI 431 martensitic stainless steel electron beam welds, Materials and Design 30 (2009).

DOI: 10.1016/j.matdes.2008.07.042

Google Scholar

[23] Y.T. Tan, T.L. Sudesh, L. Wijesinghe G.K. Lai Ng, D.J. Blackwood, Investigation into the influence of laser melting on the sulphide inclusions in AISI 416 stainless steel, Corrosion Science 53 (2011) 3950–3955.

DOI: 10.1016/j.corsci.2011.07.042

Google Scholar

[24] F.A. Esparia, V.K. Balla, A. Banduopadhyay, Laser surface modification of AISI 410 stainless steel with brass for enhanced thermal properties, Surface & Coatings Technology 204 (2010) 2510–2517.

DOI: 10.1016/j.surfcoat.2010.01.029

Google Scholar

[25] J.S. Ku, N.J. Ho, S.C. Tjongb, Properties of electron beam welded SAF 2205 duplex stainless steel, Journal ofMaterials Processing Technology 63 (1997) 770-775.

DOI: 10.1016/s0924-0136(96)02721-5

Google Scholar

[26] Y. Zhang, Z. Wang, H. Tan, J. Hong, Y. Jiang, L. Jiang, J. Li, Effect of a brief post-weld heat treatment on the microstructure evolution and pitting corrosion of laser beam welded UNS S 31803 duplex stainless steel, Corrosion Science 65 (2012).

DOI: 10.1016/j.corsci.2012.08.054

Google Scholar

[27] L. Schwarz, T. Vrtochova, K. Ulrich, Electron beam welding of duplex steels with using heat treatment, Research papers, Faculty of materials science and technology, (2010) 75-80.

DOI: 10.2478/v10186-010-0009-z

Google Scholar