Thermodynamic Stability of Fe-Cr Binary System: The Crucial Role of Magnetic Contribution as Elucidated by Calorimetric Measurements

Article Preview

Abstract:

The influence of magnetic interactions on high temperature thermodynamic stability of Fe-Cr binary system has been analysed in the light of accurate isothermal calorimetry measurements (400-1473 K) on Fe-20wt.%Cr alloy. The onset of two successive principal transformations namely, (i) α(Fe-rich bcc)+α(Cr rich bcc)α(HT bcc) at 702±10 K; and (ii) αferroαpara at 925 ±10 K, with their associated enthalpy effects (ΔoHmag = 2 kJ mol -1; Cpmag = 20 J mol-1 K-1) have been clearly delineated by the measured enthalpy variation with temperature. A precise quantification of magnetic contribution to high temperature thermodynamic stability has been attempted using physically based modelling approach.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

468-475

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. H. Lo, C. H. Shek and J. K. L. Lai, Recent Developments in Stainless Steels, Mater. Sci. Engg., R65 (2009) 39-104.

Google Scholar

[2] F. B. Pickering, Physical Metallurgy and the Design of Steels, Appl. Sci., Publ., London (1978).

Google Scholar

[3] G. Kirchner, T. Nishizawa, and B. Uhrenius, The Distribution of Chromium Between Ferrite and Austenite and the Thermodynamics of the of Equilibrium in the Fe-Cr and Fe-Mn Systems, Metall. Trans., 4A (1973) 167-174.

DOI: 10.1007/bf02649616

Google Scholar

[4] J. Andersson and B. Sundman, Thermodynamics properties of the Cr–Fe system, CALPHAD, 11 (1987) 83–92.

DOI: 10.1016/0364-5916(87)90021-6

Google Scholar

[5] W. A. Dench, Adiabatic high-temperature calorimeter for measurement of heats of alloying, Trans. Faraday Soc., 59 (1963). 1279-1286.

DOI: 10.1039/tf9635901279

Google Scholar

[6] K. Schroder, Specific Heat of Cr-Fe alloys from -140o to 350o C, Phys. Rev., 125 (1962) 1209– 1212.

Google Scholar

[7] A. S. Normanton, R. H. Moore and B. B. Argent, A calorimetric and mass spectrometric study of Iron–Chromium alloys, Metal Science, 10 (1976) 207–213.

Google Scholar

[8] B. J. Lee, J. H. Shim and H. M. Park, A semi empirical atomic potential for Fe – Cr Binary system, CALPHAD, 25 (2001) 527–534.

DOI: 10.1016/s0364-5916(02)00005-6

Google Scholar

[9] Y. Ustinovshikov, B. Pushkarev, Alloys of the Fe–Cr system: the relations between phase transitions order–disorder and ordering-separation, J. Alloys Compd., 389 (2005) 95-101.

DOI: 10.1016/j.jallcom.2004.07.050

Google Scholar

[10] W. Xiong, M. Selleby, Q. Chen, J. Odqvist and Y. Du, Phase equilibria and thermodynamics properties in Fe Cr system, Sol. St. Mat. Sci., 35(2010) 125-152.

DOI: 10.1080/10408431003788472

Google Scholar

[11] W. Xiong, P. Hedstrom, M. Selleby, J. Odqvist, M. Thuvander and Q. Chen, An improved thermodynamics modeling of the Fe–Cr system down to zero Kelvin coupled with key experiments, CALPHAD, 35 (2011) 355–366.

DOI: 10.1016/j.calphad.2011.05.002

Google Scholar

[12] M. Hennion, Chemical SRO effects in ferromagnetic Fe alloys in relation to electronic band structure, J. Phys. F: Met. Phys. 13 (1983) 235 1-2358.

DOI: 10.1088/0305-4608/13/11/017

Google Scholar

[13] A. A Mirzoev, M. M. Yalalov and D. A. Mirzaev, Calculation of the Parameters of stability for the Iron- chromium Fcc solid solutions using the results of First principle simulation, The Phys. Met. Metall., 103 (2007) 86-90.

DOI: 10.1134/s0031918x07010115

Google Scholar

[14] G. Bonny, D. Terentyev, and L. Malerba, On the α-α' miscibility gap of Fe-Cr alloys, Scrip. Mat, 59 (2008) 1193-1196.

DOI: 10.1016/j.scriptamat.2008.08.008

Google Scholar

[15] G. Bonny., D. Terentyev and L. Malerba, New contribution to the thermodynamics of Fe- Cr alloys as base for ferritic steels, J. Ph. Equlibria & Diff., 31 (2010) 439–444.

DOI: 10.1007/s11669-010-9782-9

Google Scholar

[16] I. Mirebeau and G. Parette, Neutron study of the short range order inversion in Fe1−xCrx, Phys. Rev., B82 (2010) 104203(1-5).

Google Scholar

[17] V.I. Razumovskiy, A.V. Ruban, and P.A. Korzhavyi, First-principles study of elastic properties of Cr- and Fe-rich Fe-Cr alloys, Physical Review B 84, 024106 (2011).

DOI: 10.1103/physrevb.84.024106

Google Scholar

[18] S. M. Dubiel, J. Cieslak, W. Sturhahn, M. Sternik, P. Piekarz, S. Stankov, and K. Parlinski, Vibrational Properties of a and s phases of FeCr, Phys. Rev. Lett., 104(2010) 155503(1-4).

DOI: 10.1103/physrevlett.104.155503

Google Scholar

[19] A. Caro, D. A. Crowson, M. Caro, Classic Many body potential for concentrated alloys and the inversion of order in Fe–Cr, Phys. Rev. Lett., 95 (2005) 075702 (1-4).

DOI: 10.1103/physrevlett.95.075702

Google Scholar

[20] A. Hishinuma, S. Takaki and K. Abiko, Recent Progress and Future R&D for High-Chromium Iron-Base and Chromium-Base Alloys Phys. Stat. Solidi, (a)189, (2002) 69–78.

DOI: 10.1002/1521-396x(200201)189:1<69::aid-pssa69>3.0.co;2-9

Google Scholar

[21] P Olsson, I. A. Abrikosov, L. Vitos and J. Wallenius, Ab Initio formation energies of Fe-Cr alloys, J. Nucl. Mat., 321 (2003) 84–90.

DOI: 10.1016/s0022-3115(03)00207-1

Google Scholar

[22] H. Zhang, B. Johansson and L. Vitos, Ab initio calculations of elastic properties of bcc Fe–Mg and Fe-Cr random alloys, Phys. Rev. B, 79 (2009) 224201 (1-10).

DOI: 10.1103/physrevb.79.224201

Google Scholar

[23] M. Y. Lavrentiev, D. Nguyen-Manh and S. L. Dudarev, Cluster expansion models for Fe–Cr alloys the prototype materials for power plant, Comp. Mat. Sci., 49 (2010) 5199–5203.

DOI: 10.1016/j.commatsci.2010.04.033

Google Scholar

[24] T. Klaver, R. Drautz and M. Finnis, Magnetism and thermodynamics of defect free Fe-Cr alloys, Phys. Rev. B, 74 (2006) 094435 (1-11).

DOI: 10.1103/physrevb.74.094435

Google Scholar

[25] P. A. Korzhavyi, A. V. Ruban, J. Odqvist J. O. Nilsson and B. Johansson, Electronic structure and effective chemical and magnetic exchange interactions in bcc Fe-Cr alloys, Phys. Rev. B 79 (2009) 054202.

DOI: 10.1103/physrevb.79.054202

Google Scholar

[26] M. Y. Lavrentiev and H. Mergia, Magnetic cluster expansion simulation and experimental study of high temp magnetic properties of Fe–Cr alloys, J. Phys: Cond. Mat., 24 (2012) 326001.

DOI: 10.1088/0953-8984/24/32/326001

Google Scholar

[27] B. Fultz, L. Anthony, J. L. Robertson, R. M. Nicklow, S. Spooner, and M. Mostoller, Phys. Rev., B52 (1995) 3280-3285.

DOI: 10.1103/physrevb.52.3280

Google Scholar

[28] M. S. Lucas, M. Kresch, R. Stevens, and B. Fultz, Phonon partial densities of states and entropies of Fe and Cr in bcc Fe-Cr from inelastic neutron scattering, Phys. Rev., B77 (2008) 184303 (1-5).

DOI: 10.1103/physrevb.77.184303

Google Scholar

[29] R. L. Klueh, Elevated temperature ferritic and martensitic steels and their application to future nuclear reactors, Int. Mater. Rev., 50 (2005) 287-310.

DOI: 10.2172/885938

Google Scholar

[30] S. Raju, B. Jeya Ganesh, Arun Kumar Rai, S. Saroja, E. Mohandas, M. Vijayalakshmi and Baldev Raj, Drop Calorimetry Studies on 9Cr–1W–0. 23V–0. 06Ta–0. 09C Reduced Activation Steel, Int. J. Thermophys., 31 (2010) 399-415.

DOI: 10.1007/s10765-010-0720-1

Google Scholar

[31] M. Hillert and M. Jarl, A model for alloying effect in ferromagnetic metals, CALPHAD, 2 (1978) 227-238.

DOI: 10.1016/0364-5916(78)90011-1

Google Scholar

[32] A. Dinsdale, SGTE data for pure elements, CALPHAD, 15 (1991) 317-425.

DOI: 10.1016/0364-5916(91)90030-n

Google Scholar