Short Review: Ceramic Foam Fabrication Techniques for Wastewater Treatment Application

Article Preview

Abstract:

Ceramic foam is a class of highly porous materials that are used for wide range of technological applications, specifically as absorbents and membrane for wastewater treatment process. Among the potential materials include silicon carbide (SiC), alumina (Al2O3), zirconia (ZrO2), titania (TiO2), and silica (SiO2). The review clarifies on the broad types of ceramic foam, and the common techniques of foam fabrication, such as polymeric sponge method, starch consolidation, direct foaming, and gel-casting of foam. The parameters of each fabrication techniques will be discussed crucial based on the new research findings in the field of ceramic foam.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

5-8

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Luyten, S. Mullens, J. Cooymans, A. M. De Wilde, I. Thijs, R. Kemps, Different methods to synthesize ceramic foams, J. Eur. Ceram. Soc. 29 (2009) 829-832.

DOI: 10.1016/j.jeurceramsoc.2008.07.039

Google Scholar

[2] J. Luyten, S. Mullens, J. Cooymans, A. M. De Wilde, I. Thijs, New processing techniques of ceramic foams, J. Adv. Eng. Mater. 5 (2003) 715-718.

DOI: 10.1002/adem.200300381

Google Scholar

[3] S. Sharafat, N. Ghoniem, M. Sawan, A. Ying, B. Williams, Breeder foam : An innovative solid breeder material for fusion application, J. Am. Ceram. Soc. 81 (2006) 455-460.

DOI: 10.1016/j.fusengdes.2005.06.374

Google Scholar

[4] S. Dhara, P. Bhagarva, A simple direct casting route to ceramic foams, J. Am. Ceram. Soc. 86 (2003) 1645-1650.

DOI: 10.1111/j.1151-2916.2003.tb03534.x

Google Scholar

[5] V. D. Goula, Blachou, C. Philippopoulos, Wet milling of alumina and preparation of slurries for monolithic structures impregnation, Ind. Eng. Chem. Res. 31 (1992) 364-369.

DOI: 10.1021/ie00001a049

Google Scholar

[6] Y. S, Han, J. B. Li, Y. J. Chen, Q. M. Wei, A study on the factors involved in collapse of macroporous α-Al2O3 structure, J. Mater. Proc. Tech. 128 (2002) 313-317.

Google Scholar

[7] H. X. Peng, Z. Fan, J. R. G. Evans, J. J. C. Busfield, Microstructure of ceramic foams, J. Eur. Ceram. Soc. 20 (2000) 807-813.

DOI: 10.1016/s0955-2219(99)00229-0

Google Scholar

[8] S. Woyansky, J. Scott, C. E., Processing of ceramic foams, Am. Ceram. Soc. Bull. 71 (1999) 1674-1682.

Google Scholar

[9] X. Zhu, D. Jiang, S. Tan, The control of slurry rheology in the processing of reticulated ceramic foams, Mater. Res. Bull. 37 (2002) 541-553.

Google Scholar

[10] P. Colombo, J. R. Hellmann, Ceramic foams from preceramic polymers, Mat. Res. Inn. 6 (2002) 260-272.

Google Scholar

[11] M. R. Nangrejo, X. Bao, M. J. Edirisinghe, Preparation of silicon carbide-silicon nitride composite foams from preceramic polymers, J. Eur. Ceram. Soc. 20 (2000) 1777-1785.

DOI: 10.1016/s0955-2219(00)00046-7

Google Scholar

[12] R. Riedel, Advanced ceramics from inorganic polymers, in: R. J. Brook (Ed.), Materials science and technology, a comprehensive treatment, Processing of ceramics, Part II, Wiley-VCH, Weinheim, 1995, pp.1-50.

Google Scholar

[13] P. Colombo, E. Bernardo, Macro and micro-cellular porous ceramics from preceramic polymers, J. Comp. Sci. Tech. 63 (2003) 2353-2359.

DOI: 10.1016/s0266-3538(03)00268-9

Google Scholar

[14] J. E. Martini-Vvedensky, N. P. Suh, F. A. Waldman, Microcellular closed cell foams and their method of manufacture, U. S. Patent 4, 473, 665. (1984)

Google Scholar

[15] J. D. LeMay, R. W. Hopper, L. W. Hrubesh, R. W. Pekala, Low-density microcellular materials, Mat. Res. Bull. 15 (1990) 19-45.

DOI: 10.1557/s0883769400058103

Google Scholar

[16] L. Montanaro, Y. Jorand, G. Fantozzi, A. Negro, Ceramic foams by powder processing, J. Eur. Ceram. Soc. 18 (1998) 1339-1350.

DOI: 10.1016/s0955-2219(98)00063-6

Google Scholar

[17] J. D. Li, Y. L. Shi, Y. Q. Cai, S. F. Mou, G. B. Jiang, Adsorption of di-ethyl-phthalate from aqueous solutions with surfactant-coated nano/ microsized alumina, J. Chem. Eng. 140 (2008) 214-220.

DOI: 10.1016/j.cej.2007.09.037

Google Scholar

[18] H. Schmidt, D. Koch, G. Grathwohl, P. Colombo, Micro and macroporous ceramics from preceramic precursors, J. Am. Ceram. Soc. 84 (2001) 2252-2255.

DOI: 10.1111/j.1151-2916.2001.tb00997.x

Google Scholar

[19] O. Lyckfildt, J. M. F. Ferreira, Processing of porous ceramics by starch consolidation, J. Eur. Ceram. Soc. 18 (1998) 131-140.

Google Scholar

[20] W. P. Minnear, Processing of foamed ceramics, in: M. J. Cima (Ed.), Ceramic transactions, forming science and technology for ceramics, Am. Ceram. Soc., Westerville, OH, 1992, pp.149-156.

Google Scholar

[21] P. Sepulveda, Gelcasting of foams for porous ceramics, J. Am. Ceram. Soc. 76 (1997) 61-65.

Google Scholar

[22] Z. Zivcova, E. Gregorova, W. Pabst, S. David, A. Michot, C. Poulier, Thermal conductivity of porous alumina ceramics prepared using starch as a pore-forming agent, J. Eur. Ceram. Soc. 29 (2009) 347-353.

DOI: 10.1016/j.jeurceramsoc.2008.06.018

Google Scholar

[23] P. Sepulveda, J. G. P. Binner, Processing of cellular ceramics by foaming and in situ polymerisation of organic monomers, J. Eur. Ceram. Soc. 19 (1999) 2059-2066.

DOI: 10.1016/s0955-2219(99)00024-2

Google Scholar

[24] F. S. Ortega, F. A. O. Valenzuela, C. H. Scuracchio, V. C. Pandolfelli, Alternative gelling agents for the gelcasting of ceramic foams, J. Eur. Ceram. Soc. 23 (2003) 75-80.

DOI: 10.1016/s0955-2219(02)00075-4

Google Scholar

[25] U. T. Gonzenbach, A. R. Studart, E. Tervoort, L. J. Gauckler, J. Am. Ceram. Soc. 90 (2007) 16.

Google Scholar

[26] F. Zhang, T. Kato, M. Fuji, M. Takahashi, J. Eur. Ceram. Soc. 26 (2006) 667.

Google Scholar

[27] M. Xiaojian, W. Shiwei, S. Shunzo, Porous ceramics with tri-modal pores prepared by foaming and starch consolidation, J. Ceram. Int. 34 (2008) 107-112.

DOI: 10.1016/j.ceramint.2006.08.009

Google Scholar