Microstructural and Optical Properties of SnO Thin Film by Thermal Evaporation

Article Preview

Abstract:

In this work, we present results about the preparation and characterization of stannous oxide (SnO) thin films. SnO thin films were obtained via thermal evaporation method from SnO2 powder as source material. These thin films were successfully deposited onto well cleaned glass substrates by thermal evaporation technique. The as deposited thin films were of thickness of 2500 Å and film were post-deposition annealed in air ambient at 400°C for 20 min and 40 min, respectively in a furnace. As-deposited films are highly conductive and p type. The best p-type SnO film annealed at 400 °C for 40 min shows a resistivity of 1.05 Ω·cm and a relatively high hole concentration of 2 × 1017 cm3 at room temperature. The X-ray diffraction (XRD) patterns of annealed films exhibit a polycrystalline hexagonal wurtzite structure without preferred orientation. The scanning electron microscopy (SEM) image shows the presence of uniformly dispersed spherical in shaped SnO particles. The mean grain sizes (diameter) are calculated to be about 80 and 100 nm for the p-type SnO films prepared at 400 °C for 20 min, and 40 min, respectively. Room temperature photoluminescence (PL) spectra of the SnO film exhibit two emission bands, around the wavelength of 300 nm and 450 nm. All spectra were measured at room temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

558-562

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Heilig, N. Bârsan,U.Weimar,M. Schweizer-Berberich, J.W. Gardner,W. Göpel, Fast gas sensors based on metal oxides which are stable at high temperatures, Sens. Actuators B 43 (1997) 1–10.

DOI: 10.1016/s0925-4005(97)00096-8

Google Scholar

[2] P.W. Park, H.H. Kung, D.W. Kim, M.C. Kung, Characterization of SnO2/Al2O3 lean NOx catalysts, J. Catal. 184 (1999) 440–454.

DOI: 10.1006/jcat.1999.2459

Google Scholar

[3] T. Minami, Transparent conducting oxide semiconductors for transparent electrodes, Semicond. Sci. Technol. 20 (2005) S35–S44.

DOI: 10.1088/0268-1242/20/4/004

Google Scholar

[4] S.J. Han, B.C. Jang, T. Kim, S.M. Oh, T. Hyeon, Simple synthesis of hollow tin dioxide microspheres and their application to lithium-ion battery anodes, Adv. Funct. Mater. 15 (2005) 1845–1850.

DOI: 10.1002/adfm.200500243

Google Scholar

[5] Y.L. Wang, X.C. Jiang, Y.N. Xia, Solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions, J. Am. Chem. Soc. 125 (2003) 16176–16177.

DOI: 10.1021/ja037743f

Google Scholar

[6] A. Kolmakov, Y.X. Zhang, G.S. Cheng, M. Moskovits, Detection of COandO2 using tin oxide nanowire sensors, Adv. Mater. 15 (2003) 997–1000.

DOI: 10.1002/adma.200304889

Google Scholar

[7] Q. Kuang, C.S. Lao, Z.L. Wang, Z.X. Xie, L.S. Zhang, High-sensitivity humidity sensor based single SnO2 nanowire, J.AmChem. Soc 129 (2007) 6070–6071.

DOI: 10.1021/ja070788m

Google Scholar

[8] J. Huang, N. Matsunaga, K. Shimanoe, N. Yamazoe, T. Kunitake, Nanotubular SnO2 templated by cellulose fibers: synthesis and gas sensing, Chem. Mater. 17 (2005) 3513–3518.

DOI: 10.1021/cm047819m

Google Scholar

[9] Y. Liu, M.L. Liu, Growth of aligned square-shaped SnO2 tube arrays, Adv. Funct. Mater. 15 (2005) 57–62.

DOI: 10.1002/adfm.200400001

Google Scholar

[10] J.Q. Sun, J.S. Wang, X.C. Wu, G.S. Zhang, J.Y. Wei, S.Q. Zhang, H. Li, D.R. Chen, Novel method for high-yield synthesis of rutile SnO2 nanorods by oriented aggregation, Cryst. Growth Des. 6 (2006) 1584–1587.

DOI: 10.1021/cg050574l

Google Scholar

[11] T.Hyodo, K. Sasahara, Y. Shimizu, M. Egashira, Preparation of macroporous SnO2 films using PMMA microspheres and their sensing properties to NOx and H2, Sens. Actuators B 106 (2005) 580–590.

DOI: 10.1016/j.snb.2004.07.024

Google Scholar

[12] T. Hyodo, N. Nishida, Y. Shimizu, Y. Egishara, Preparation and gas-sensing properties of thermally stable mesoporous SnO2, Sens. Actuators B 83 (2002) 209–215.

DOI: 10.1016/s0925-4005(01)01042-5

Google Scholar

[13] M. K. Kennedy, F. E. Kruis, H. Fissan, H. Nienhaus, A. Lorke, T. H. Metzger, Effect of in-flight annealing and deposition method on gas-sensitive SnOx films made from size-selected nanoparticles, Sensors and Actuators B 108 (2005) 62-69.

DOI: 10.1016/j.snb.2005.01.054

Google Scholar

[14] K.S. Yoo, N.M. Cho, H.S. Song, H.J. Jung, Surface morphology and gas-sensing characteristics of SnO2−x thin films oxidized from Sn films, Sens. Actuators B25 (1995) 474–477.

DOI: 10.1016/0925-4005(95)85101-1

Google Scholar

[15] A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, "Repeated Temperature Modulation Epitaxy for p-Type Doping and Light-Emitting Diode Based on ZnO," Nat. Mater., 4 [1] 42–6 (2005).

DOI: 10.1038/nmat1284

Google Scholar

[16] M. D. Irwin, D. B. Buchholz, A. W. Hains, R. P. H. Chang, and T. J. Marks, "P-Type Semiconducting Nickel Oxide as an Efficiency-Enhancing Anode Interfacial Layer in Polymer Bulk-Heterojunction Solar Cells," Proc. Natl. Acad. Sci., 105 [8] 2783–7 (2008).

DOI: 10.1073/pnas.0711990105

Google Scholar

[17] L. Y. Liang, Z. M. Liu, H. T. Cao, X. Q. Pan, Microstructural, optical, and electrical properties of SnO thin films prepared on quartz via a two-step method, Appl. Mater. Interfaces, 2 (2010) 1060-1065.

DOI: 10.1021/am900838z

Google Scholar

[18] Y. Ogo, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, "P-Channel Thin-Film Transistor Using p-Type Oxide Semiconductor, SnO," Appl. Phys. Lett., 93 [3] 032113 (2008).

DOI: 10.1063/1.2964197

Google Scholar

[19] L.S. Chuah, M. S. Yaacob, Z. Hassan, Low temperature synthesis of Ni-doped SnO2 thin films by spin coating route, Optoelectronics and Advanceed Materials-Rapid Communications, vol. 6, no. 1-2, 157-161 (2012).

Google Scholar

[20] L.S. Chuah, M. A. Ahmad, Z. Hassan, S. K. Mohd Bakhori, M. J. Abdullah, Nanocrystalline ZnO film grown on porous SnO2/Si(111) substrate, Composite Interfaces, vol. 18, 627-632 (2011).

DOI: 10.1163/156855411x612285

Google Scholar

[21] L. Karen Herrera, A. Justo, J. L. Perez-Rodriquez, study of nanocrystalline SnO2 particles formed during the corrosion processes of ancient amalgam mirrors, Journal of Nano Research, vol. 8. (2009) 99-107.

DOI: 10.4028/www.scientific.net/jnanor.8.99

Google Scholar

[22] B. Cheng, J. M. Russell, W. S. Shi, L. Zhang, E.T.J. Samulski, J. Am. Chem. Soc., 126, 5972 (2004).

Google Scholar