[1]
W.B. Rowe and J.A. Pettit, A. Boyle, J.L. Moruzzi: Avoidance of Thermal Damage in Grinding and Prediction of the Damage Threshold, Annals of the CIRP 37 (1) (1988), p.327.
DOI: 10.1016/s0007-8506(07)61646-1
Google Scholar
[2]
Tan Jin, D J Stephenson and W B Rowe. Estimation of the Convection Heat Transfer Coefficient of Coolant within the Grinding Zone. Proceedings of I Mech E, 2003, 217, Part B, J of Engineering Manufacture, p.397.
DOI: 10.1243/095440503321590550
Google Scholar
[3]
W.B. Rowe, M.N. Morgan and D.R. Allanson: An Advance in the Modelling of Thermal Effects in the Grinding Process, Annals of CIRP 40 (1) (1991), p.339.
DOI: 10.1016/s0007-8506(07)62001-0
Google Scholar
[4]
T. Jin, D J Stephenson, G Z Xie and X M Sheng. Investigation on cooling efficiency of grinding fluids in deep grinding. CIRP Annals -Manufacturing Technology. 60 (2001), p.343.
DOI: 10.1016/j.cirp.2011.03.111
Google Scholar
[5]
T. Jin and D J Stephenson. A Study of the Convection Heat Transfer Coefficients of Grinding Fluids. CIRP Annals -Manufacturing Technology. 57 (2008), p.367.
DOI: 10.1016/j.cirp.2008.03.074
Google Scholar
[6]
W.B. Rowe, M.N. Morgan, S.C.E. Black and B. Mills: A Simplified Approach to Thermal Damage in Grinding, Annals of the CIRP 45 (1) (1996), p.299.
DOI: 10.1016/s0007-8506(07)63067-4
Google Scholar
[7]
W.B. Rowe, Temperature Case Studies in Grinding Including an Inclined Heat Source Model, Proc Instn Mech Engrs Vol. 215 Part B, (2001), p.473.
Google Scholar
[8]
W. B Rowe, S. Black, B. Mills, M. Morgan and H.S. Qi: Grinding Temperatures and Energy Partitioning, Proceedings of the Royal Society, Part A 453 (1997), p.1083.
Google Scholar
[9]
W.B. Rowe, H.S. Qi, M.N. Morgan and H.W. Zhang: The Effect of Deformation in the Contact Area in Grinding, Annals of CIRP 42 (1) (1993), p.409.
DOI: 10.1016/s0007-8506(07)62473-1
Google Scholar
[10]
W. B. Rowe and T. Jin: Temperature in High Efficiency Deep Grinding (HEDG), Annals of CIRP, Vol. 50(1) (2001), p.205.
DOI: 10.1016/s0007-8506(07)62105-2
Google Scholar
[11]
W. B. Rowe: Thermal Analysis of High Efficiency Deep Grinding, International Journal of Machine Tools & Manufacture 41(2001), p.1.
DOI: 10.1016/s0890-6955(00)00074-2
Google Scholar
[12]
Rogers G F C and Mayhew Y R, 1967, Engineering Thermodynamics, Work and Heat Transfer, 2nd edition, Longman, London and New York.
Google Scholar
[13]
Morgan M N, Jackson A R, Baines-Jones V, Batako A D, Rowe W B, 2008, Optimisation of Fluid Application in Grinding, Annals of the CIRP, 57, 1, (2008), p.363.
DOI: 10.1016/j.cirp.2008.03.090
Google Scholar
[14]
M N Morgan, W B Rowe, S C E Black and D R Allanson: Effective Thermal Properties of Grinding Wheels and Grains, Proc I Mech E Vol. 212(1998) Part B: p.661.
DOI: 10.1243/0954405981515923
Google Scholar
[15]
L M Barczak, A D L Batako and M N Morgan. A Study of Plane Surface Grinding under Minimum Quantity Lubrication (MQL) Conditions. Int. J. Machine Tool & Manufacture. 50 (2010), p.977.
DOI: 10.1016/j.ijmachtools.2010.07.005
Google Scholar
[16]
Lin Bin, Xuewen Chen, M N. Morgan and Hui Wu. Estimation of the Convection Heat Transfer Coefficient of Coolant and Prediction of the Maximum Temperature within the Grinding Zone. Int. J. Abrasive Technology, Vol. 2, No. 2, 2009, p.130.
DOI: 10.1504/ijat.2009.022584
Google Scholar
[17]
M. N. Morgan, L. Barczak and A. Batako. Temperatures in Fine Grinding with Minimum Quantity Lubrication (MQL). Int J Adv Manuf Technol (2012) 60, p.951.
DOI: 10.1007/s00170-011-3678-7
Google Scholar