[1]
Keller, V., P. Bernhardt and F. Garin, Photocatalytic oxidation of butyl acetate in vapor phase on TiO2, Pt/TiO2 and WO3/TiO2 catalysts. Journal of catalysis, 2003. 215(1): pp.129-138.
DOI: 10.1016/s0021-9517(03)00002-2
Google Scholar
[2]
Nathaporn, A., V. Saravanamuthu and H.N. Huu, A continuous photocatalysis system in the degradation of herbicide. Korean Journal of Chemical Engineering, 2008. 25(4):P. 663-669.
Google Scholar
[3]
Lee, J.H. and Kang. M, The preparation of TiO2 nanometer photocatalyst film by a hydrothermal method and its sterilization performance for Giardia lamblia. Water Research, 2004. 38(3): pp.713-719.
DOI: 10.1016/j.watres.2003.10.011
Google Scholar
[4]
H., P. Shivaraju, Removal of Organic Pollutants in the Municipal Sewage Water by TiO2 based Heterogeneous Photocatalysis. International Journal of Environmental Sciences, 2011. 1(5): pp.911-923.
Google Scholar
[5]
O Kte, A.N. and E. Say I Ns O Z, Characterization and photocatalytic activity of TiO2 supported sepiolite catalysts. Separation and Purification Technology, 2008. 62(3): pp.535-543.
DOI: 10.1016/j.seppur.2008.03.011
Google Scholar
[6]
HE, Z., Microwave photocatalytic degradation of Rhodamine B using TiO2 supported on activated carbon: Mechanism implication. Journal of Environmental Sciences, 2009. 21(2): pp.268-272.
DOI: 10.1016/s1001-0742(08)62262-7
Google Scholar
[7]
Phanikrishna Sharma, M.V., V. Durga Kumari and M. Subrahmanyam, TiO2 supported over porous silica photocatalysts for pesticide degradation using solar light: Part 2. Silica prepared using acrylic acid emulsion. Journal of hazardous materials, 2010. 175(1): pp.1101-1105.
DOI: 10.1016/j.jhazmat.2009.10.056
Google Scholar
[8]
Nezamzadeh-Ejhieh, A. and S. Hushmandrad, Solar photodecolorization of methylene blue by CuO/X zeolite as a heterogeneous catalyst. Applied Catalysis A: General, 2010. 388(1): pp.149-159.
DOI: 10.1016/j.apcata.2010.08.042
Google Scholar
[9]
Magalhães, F. and R.M. Lago, Floating photocatalysts based on TiO2 grafted on expanded polystyrene beads for the solar degradation of dyes. Solar Energy, 2009. 83(9): pp.1521-1526.
DOI: 10.1016/j.solener.2009.04.005
Google Scholar
[10]
Huo, P, Floating photocatalysts of fly-ash cenospheres supported AgCl/TiO2 films with enhanced Rhodamine B photodecomposition activity. Desalination, 2010. 256(1–3): pp.196-200.
DOI: 10.1016/j.desal.2010.01.012
Google Scholar
[11]
Chen, S.F. and G.Y. Cao, Photocatalytic Degradation of Organophosphorus Pesticides Using Floating Photocatalyst TiO2 Center Dot SiO2/Beads by Sunlight. Sol. Energy, 2005. 79(1):P. 1-9.
DOI: 10.1016/j.solener.2004.10.006
Google Scholar
[12]
Chuan, X., M. Hirano and M. Inagaki, Preparation and photocatalytic performance of anatase-mounted natural porous silica, pumice, by hydrolysis under hydrothermal conditions. Applied Catalysis B: Environmental, 2004. 51(4): pp.255-260.
DOI: 10.1016/j.apcatb.2004.03.004
Google Scholar
[13]
Machado, L.C.R., C.B. Torchia and R.M. Lago, Floating photocatalysts based on TiO2 supported on high surface area exfoliated vermiculite for water decontamination. Catalysis Communications, 2006. 7(8): pp.538-541.
DOI: 10.1016/j.catcom.2005.10.020
Google Scholar
[14]
YANG Yang, CHEN Aiping , GU Hongchen, Photocatalytic Degradation of Oil Film Floating on Water by TiO2 Immobilized on Expanded Perlite. Chinese Journal of Catalysis; 2001. 22(2): P. 177-180.
Google Scholar
[15]
Liu Fengyu, Ling Kaicheng, Photocatalytic oxidation of sodium thiosulfate by using floating TiO2/EP catalyst. Industrial Catalysis, 2010. 18(7): P. 66-70.
Google Scholar
[16]
Pichor, W. and A. Janiec, Thermal stability of expanded perlite modified by mullite. Ceramics International, 2009. 35(1): pp.527-530.
DOI: 10.1016/j.ceramint.2007.10.008
Google Scholar