Low-Temperature Hydrothermal Synthesis and Electrochemical Properties of Birnessit-Type Manganese Dioxide Nanosheets

Article Preview

Abstract:

Birnessite MnO2 nanosheets were synthesized by self-limiting deposition of KMnO4 in a facile low-temperature hydrothermal process. The MnO2 electrode exhibits a high specific capacitance of 169 F g-1 at a current density of 0.1 A g-1, good rate capability with a capacitance of 96 F g-1 even at a high current density of 5 A g-1, as well as excellent cycle stability with capacitance retention of 94% at 1 A g-1 after 1,000 cycles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

393-397

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Yan, T. Wei, J. Cheng, Z.J. Fan and M.L. Zhang, Preparation and electrochemical properties of lamellar MnO2 for supercapacitors, Mater. Res. Bull 45 (2010) 210-215.

DOI: 10.1016/j.materresbull.2009.09.016

Google Scholar

[2] X.H. Tang, Z.H. Liu, C.X. Zhang, Z.P. Yang and Z.L. Wang, Synthesis and capacitive property of hierarchical hollow manganese oxide nanospheres with large specific surface area, J. Power Sources 193 (2009) 939-943.

DOI: 10.1016/j.jpowsour.2009.04.037

Google Scholar

[3] X.H. Tang, H.J. Li, Z.H. Liu, Z.P. Yang and Z.L. Wang, Preparation and capacitive property of manganese oxide nanobelt bundles with birnessite-type structure, J. Power Sources 196 (2011) 855-859.

DOI: 10.1016/j.jpowsour.2010.06.067

Google Scholar

[4] J. Lou, A.M. Huang, S.H. Park, S.L. Suib and C.L. O'Young, Crystallization of sodium-birnessite and accompanied phase transformation, Chem. Mater. 10 (1998) 1561–1568.

DOI: 10.1021/cm970745c

Google Scholar

[5] J.P. Hill, S. Alam, K. Ariga, C.E. Anson and A.K. Powell, Nanostructured microspheres of MnO2 formed by room temperature solution processing, Chem. Commun. 3 (2008) 383–385.

DOI: 10.1039/b713201h

Google Scholar

[6] O.A. Vargas, A. Caballero, L. Heman, J. Morales, Improved capacitive properties of layered manganese dioxide grown as nanowires, J. Power Sources 1936 (2011) 3350-3354.

DOI: 10.1016/j.jpowsour.2010.11.097

Google Scholar

[7] A.J. Roberts, R.C.T. Slade, Synthesis of birnessite type MnO2 nanotubes and their application in aqueous supercapacitors, J. Electrochem. Soc. 28 (2010) 33-46.

Google Scholar

[8] D. Yan, P.X. Yan, S. Cheng, J.T. Chen, R.F. Zhuo, J.J. Feng and G.A. Zhang, Fabrication, in-depth characterization, and formation mechanism of crystalline porous birnessite MnO2 film with amorphous bottom layers by hydrothermal method, Cryst. Growth Des. 9 (2009).

DOI: 10.1021/cg800312u

Google Scholar

[9] Z.P. Li, Y.J. Mi, X.H. Liu, S. Liu, S.R. Yang and J.Q. Wang, Flexible graphene/MnO2 composite papers for supercapacitor electrodes, J. Mater. Chem. 21 (2011) 14706-14711.

DOI: 10.1039/c1jm11941a

Google Scholar

[10] E. Beaudrouet, A.L.G.L. Salle and D. Guyomard, Nanostructured manganese dioxides: synthesis and properties as supercapacitor electrode materials, Electrochim. Acta. 54 (2009) 1240-1248.

DOI: 10.1016/j.electacta.2008.08.072

Google Scholar

[11] P. Yu, X. Zhang, Y. Chen and Y.W. Ma, Self-template route to MnO2 hollow structures for supercapacitors, Mater. Lett. 64 (2010) 1480-1482.

DOI: 10.1016/j.matlet.2010.03.067

Google Scholar

[12] C.J. Xu, H.D. Du, B.H. Li, F.Y. Kang and Y.Q. Zeng, Capacitive behavior and charge storage mechanism of manganese dioxide in aqueous solution containing bivalent cations, J. Electrochem. Soc. 156 (2009) 73-78.

DOI: 10.1149/1.3021013

Google Scholar

[13] S.C. Pang, M.A. Anderson and T.W. Chapman, Novel electrode materials for thin-film ultracapacitors: comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide, J. Electrochem. Soc. 147 (2000) 444-450.

DOI: 10.1149/1.1393216

Google Scholar