[1]
D. W. Kim, N. Ecomoto, Z. Nakagawa, K. Kawamura, Molecular Dynamic Simulation in Titanium Dioxide Polymorphs: Rutile, Brookite, and Anatase, J. Am. Ceram. Soc. 79 (1996) 1095.
DOI: 10.1111/j.1151-2916.1996.tb08553.x
Google Scholar
[2]
M. Matsui, G.D. Price and A. Patel, Comparison between the lattice dynamics and molecular dynamics methods: Calculation results for MgSiO3 perovskite (pages 1659–1662),Geophys. Res. Lett. 21 (1994).1659-1662.
DOI: 10.1029/94gl01370
Google Scholar
[3]
L.Y. Lu, Y. Cheng, X.R. Chen, J. Zhu, Thermodynamic properties of MgO under high pressure from first-principles calculations, Physica B, 370 (2005) 236-242.
DOI: 10.1016/j.physb.2005.09.017
Google Scholar
[4]
K.Kawamura,K. Hirako, Material Design Using Personal Computer, Shokabo,Tokyo (1994).
Google Scholar
[5]
E. Wigner, On the Quantum Correction for Thermodynamic Equilibrium,Phy. Rev. 40 (1932)749.
Google Scholar
[6]
Y. Ida, Interionic repulsive force and compressibility of ions, Phys. Earth Planet Inter.13 (1976)97.
DOI: 10.1016/0031-9201(76)90074-1
Google Scholar
[7]
P.M. Morse, Diatomic molecules according to the wave mechanics, Part 2: vibrational levels, Phys. Rev.34 (1929)57.
DOI: 10.1103/physrev.34.57
Google Scholar
[8]
P. Shukla, T. Watanabe, J.C. Nino, J.S. Tulenko S.R. Phillpot, Thermal transport properties of MgO and Nd2 Zr2O7pyrochloreby molecular dynamics simulation, J. Nucl. Mater.380 (2008)1-7.
DOI: 10.1016/j.jnucmat.2008.06.043
Google Scholar
[9]
G. Fiquet, P. Richet,G. Montagnac, High-temperature thermal expansion of lime, periclase, corundum and spinel, Phys. Chem. Miner.27(1999)103-177.
DOI: 10.1007/s002690050246
Google Scholar
[10]
RAS V.S. Urusov, I. Yu. Kantor,Simulatioin of properties of Periclase by Minimizing Atomization Energy, Dokladdy Academii Nauk. 368(2002)614.
Google Scholar
[11]
G.K. White and O.L. Anderson,Grüneisen Parameter of Magnesium Oxide,J. Appl. Phys. 37 (1996) 430.
Google Scholar
[12]
Y. Fei, S. K. Saxena and A. Navrotsky, Internally consistent thermodynamic data and equilibrium phase relations for compounds in the system MgO-SiO2 at high pressure and high temperature, J. Geophys. Res., 95 (1990) 6915-6928.
DOI: 10.1029/jb095ib05p06915
Google Scholar
[13]
T. Song, X.W. Sun, Y.X. Liu, Z.J. Liu, Q.F. Chen C.W. Wang, Comparative study of the structural and thermodynamic properties of MgO at high pressures and high temperatures,J. Alloys Compds.461 (2008)279-284.
DOI: 10.1016/j.jallcom.2007.06.122
Google Scholar
[14]
V. P. Glushko, Thermal Constants of Materials, Handbook, Nos. 1-10 (VINITI, Moscow, 1965-1981).
Google Scholar
[15]
A.R. Organov, P.I. Dorogokupets, All-electron and pseudopotential study of MgO: equation of state, anharmonicityand stability, Phys. Rev. B.67 (2003) 224110.
DOI: 10.1103/physrevb.67.224110
Google Scholar
[16]
A.J Slifka, B.J. Filla J.M. Phelps, Thermal conductivity of magnesium oxide from absolute, steady-state measurements, J. Res. Natl. Inst. Stand. Technol.103 (1998)357-368.
DOI: 10.6028/jres.103.021
Google Scholar
[17]
F.R. Charvat, W.D. Kingery,Thermal conductivity CIII: Effect of microstructure on conductivity of single phase ceramics, J. Am. Ceram. Soc. 40 (1957)306.
DOI: 10.1111/j.1151-2916.1957.tb12627.x
Google Scholar
[18]
M. Mc. Quarrie, Thermal conductivity: V. High temperature method and results for alumina, magnesia, and beryllia from 1000 to 1800∘C, J. Am. Ceram. Soc. 37(1954)84.
DOI: 10.1111/j.1551-2916.1954.tb20104.x
Google Scholar
[19]
M. Neuberger, D.B. Carter, Magnesium Oxide; Hughes Aircraft Co., Electronic Properties Information Center, Culver City, CA, 1969.
Google Scholar