Studies Thermophysical Properties of MgO by First Principle Simulation

Article Preview

Abstract:

The thermal properties of MgO were simulated by molecular dynamics (MD) method. In this present, we have investigated thermophysical properties of MgO at the temperature range from 300 to 2000 K. The MD could be indicated lattice parameter, bulk modulus, linear thermal expansion coefficient (αlin), heat capacity at constant volume, heat capacity at constant pressure, pair correlation of ions and thermal conductivity by partial ionic model (PIM). The Busing-Ida with potential parameters was employed for interatomic potential function. The results showed the lattice parameters, the αlin and the heat capacities of MgO increases with increasing temperature,whereas the bulk modulus and the thermal conductivity decreases with increasing temperature are agreement with literature data.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

139-143

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. W. Kim, N. Ecomoto, Z. Nakagawa, K. Kawamura, Molecular Dynamic Simulation in Titanium Dioxide Polymorphs: Rutile, Brookite, and Anatase, J. Am. Ceram. Soc. 79 (1996) 1095.

DOI: 10.1111/j.1151-2916.1996.tb08553.x

Google Scholar

[2] M. Matsui, G.D. Price and A. Patel, Comparison between the lattice dynamics and molecular dynamics methods: Calculation results for MgSiO3 perovskite (pages 1659–1662),Geophys. Res. Lett. 21 (1994).1659-1662.

DOI: 10.1029/94gl01370

Google Scholar

[3] L.Y. Lu, Y. Cheng, X.R. Chen, J. Zhu, Thermodynamic properties of MgO under high pressure from first-principles calculations, Physica B, 370 (2005) 236-242.

DOI: 10.1016/j.physb.2005.09.017

Google Scholar

[4] K.Kawamura,K. Hirako, Material Design Using Personal Computer, Shokabo,Tokyo (1994).

Google Scholar

[5] E. Wigner, On the Quantum Correction for Thermodynamic Equilibrium,Phy. Rev. 40 (1932)749.

Google Scholar

[6] Y. Ida, Interionic repulsive force and compressibility of ions, Phys. Earth Planet Inter.13 (1976)97.

DOI: 10.1016/0031-9201(76)90074-1

Google Scholar

[7] P.M. Morse, Diatomic molecules according to the wave mechanics, Part 2: vibrational levels, Phys. Rev.34 (1929)57.

DOI: 10.1103/physrev.34.57

Google Scholar

[8] P. Shukla, T. Watanabe, J.C. Nino, J.S. Tulenko S.R. Phillpot, Thermal transport properties of MgO and Nd2 Zr2O7pyrochloreby molecular dynamics simulation, J. Nucl. Mater.380 (2008)1-7.

DOI: 10.1016/j.jnucmat.2008.06.043

Google Scholar

[9] G. Fiquet, P. Richet,G. Montagnac, High-temperature thermal expansion of lime, periclase, corundum and spinel, Phys. Chem. Miner.27(1999)103-177.

DOI: 10.1007/s002690050246

Google Scholar

[10] RAS V.S. Urusov, I. Yu. Kantor,Simulatioin of properties of Periclase by Minimizing Atomization Energy, Dokladdy Academii Nauk. 368(2002)614.

Google Scholar

[11] G.K. White and O.L. Anderson,Grüneisen Parameter of Magnesium Oxide,J. Appl. Phys. 37 (1996) 430.

Google Scholar

[12] Y. Fei, S. K. Saxena and A. Navrotsky, Internally consistent thermodynamic data and equilibrium phase relations for compounds in the system MgO-SiO2 at high pressure and high temperature, J. Geophys. Res., 95 (1990) 6915-6928.

DOI: 10.1029/jb095ib05p06915

Google Scholar

[13] T. Song, X.W. Sun, Y.X. Liu, Z.J. Liu, Q.F. Chen C.W. Wang, Comparative study of the structural and thermodynamic properties of MgO at high pressures and high temperatures,J. Alloys Compds.461 (2008)279-284.

DOI: 10.1016/j.jallcom.2007.06.122

Google Scholar

[14] V. P. Glushko, Thermal Constants of Materials, Handbook, Nos. 1-10 (VINITI, Moscow, 1965-1981).

Google Scholar

[15] A.R. Organov, P.I. Dorogokupets, All-electron and pseudopotential study of MgO: equation of state, anharmonicityand stability, Phys. Rev. B.67 (2003) 224110.

DOI: 10.1103/physrevb.67.224110

Google Scholar

[16] A.J Slifka, B.J. Filla J.M. Phelps, Thermal conductivity of magnesium oxide from absolute, steady-state measurements, J. Res. Natl. Inst. Stand. Technol.103 (1998)357-368.

DOI: 10.6028/jres.103.021

Google Scholar

[17] F.R. Charvat, W.D. Kingery,Thermal conductivity CIII: Effect of microstructure on conductivity of single phase ceramics, J. Am. Ceram. Soc. 40 (1957)306.

DOI: 10.1111/j.1151-2916.1957.tb12627.x

Google Scholar

[18] M. Mc. Quarrie, Thermal conductivity: V. High temperature method and results for alumina, magnesia, and beryllia from 1000 to 1800∘C, J. Am. Ceram. Soc. 37(1954)84.

DOI: 10.1111/j.1551-2916.1954.tb20104.x

Google Scholar

[19] M. Neuberger, D.B. Carter, Magnesium Oxide; Hughes Aircraft Co., Electronic Properties Information Center, Culver City, CA, 1969.

Google Scholar