A Semi-Parametric Model for Longitudinal Count Data

Article Preview

Abstract:

Longitudinal count data analysis has been widely used in various social science and nature science. In this paper, we proposed a semi-parametric negative multinomia model for longitudinal count data. Using local likelihood technique and marginal distribution, we proposed an estimation procedure for our new model. The finite-sample properties are studied with a simulation study.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 805-806)

Pages:

1921-1924

Citation:

Online since:

September 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. L. Zeger, and K. -Y. Liang, Longitudinal data analysis for discrete and continuous outcomes, Biometrics, pp.121-130, (1986).

DOI: 10.2307/2531248

Google Scholar

[2] P. F. Thall, and S. C. Vail, Some covariance models for longitudinal count data with overdispersion, Biometrics, pp.657-671, (1990).

DOI: 10.2307/2532086

Google Scholar

[3] V. Jowaheer, and B. C. Sutradhar, Analysing longitudinal count data with overdispersion, Biometrika, vol. 89, no. 2, pp.389-399, (2002).

DOI: 10.1093/biomet/89.2.389

Google Scholar

[4] D. R. Hoover, J. A. Rice, C. O. Wu et al., Nonparametric smoothing estimates of time-varying coefficient models with longitudinal data, Biometrika, vol. 85, no. 4, pp.809-822, (1998).

DOI: 10.1093/biomet/85.4.809

Google Scholar

[5] X. Lin, and R. J. Carroll, Nonparametric function estimation for clustered data when the predictor is measured without/with error, Journal of the American statistical Association, vol. 95, no. 450, pp.520-534, (2000).

DOI: 10.1080/01621459.2000.10474229

Google Scholar

[6] X. Lin, and R. J. Carroll, Semiparametric regression for clustered data using generalized estimating equations, Journal of the American Statistical Association, vol. 96, no. 455, (2001).

DOI: 10.1198/016214501753208708

Google Scholar

[7] N. Wang, R. J. Carroll, and X. Lin, Efficient semiparametric marginal estimation for longitudinal/clustered data, (2003).

Google Scholar

[8] J. Fan, Local polinomial modelling and its applications: CRC Press, (1996).

Google Scholar