[1]
S. L. Zeger, and K. -Y. Liang, Longitudinal data analysis for discrete and continuous outcomes, Biometrics, pp.121-130, (1986).
DOI: 10.2307/2531248
Google Scholar
[2]
P. F. Thall, and S. C. Vail, Some covariance models for longitudinal count data with overdispersion, Biometrics, pp.657-671, (1990).
DOI: 10.2307/2532086
Google Scholar
[3]
V. Jowaheer, and B. C. Sutradhar, Analysing longitudinal count data with overdispersion, Biometrika, vol. 89, no. 2, pp.389-399, (2002).
DOI: 10.1093/biomet/89.2.389
Google Scholar
[4]
D. R. Hoover, J. A. Rice, C. O. Wu et al., Nonparametric smoothing estimates of time-varying coefficient models with longitudinal data, Biometrika, vol. 85, no. 4, pp.809-822, (1998).
DOI: 10.1093/biomet/85.4.809
Google Scholar
[5]
X. Lin, and R. J. Carroll, Nonparametric function estimation for clustered data when the predictor is measured without/with error, Journal of the American statistical Association, vol. 95, no. 450, pp.520-534, (2000).
DOI: 10.1080/01621459.2000.10474229
Google Scholar
[6]
X. Lin, and R. J. Carroll, Semiparametric regression for clustered data using generalized estimating equations, Journal of the American Statistical Association, vol. 96, no. 455, (2001).
DOI: 10.1198/016214501753208708
Google Scholar
[7]
N. Wang, R. J. Carroll, and X. Lin, Efficient semiparametric marginal estimation for longitudinal/clustered data, (2003).
Google Scholar
[8]
J. Fan, Local polinomial modelling and its applications: CRC Press, (1996).
Google Scholar