[1]
F.P. Incropera, D.P. Dewitt, T.L. Bergmann and A.S. Lavine. Fundamentals of Heat and Mass Transfer. 6th edition. Willey. Asia. (2006).
Google Scholar
[2]
L.D. Campo, R.B. Perez-Saez, L. Gonzalez-Fernandez, X. Esquisabel, I. Fernandez, P. Gonzalez-Martin and M.J. Tello, Emissivity measurements on aeronautical alloys, Journal of alloys and compounds, Vol. 489 (2010), pp.482-487.
DOI: 10.1016/j.jallcom.2009.09.091
Google Scholar
[3]
S. Marinetti and P.G. Cesaratto. Emissivity estimation for accurate quatitative thermography, NDT&E International, Vol. 51 (2012), pp.127-134.
DOI: 10.1016/j.ndteint.2012.06.001
Google Scholar
[4]
ASTM E 1862-97, Standard test methods for measuring and compensating for reflected temperature using infrared imaging radiometers (2002).
Google Scholar
[5]
A.A. Gowen, B.K. Tiwari, P.J. Cullen, K. McDonnell and C.P. ÓDonnell, Applications of thermal imaging in food quality and safety assessment, Trends in food science & technology, Vol. 21 (2010), pp.190-200.
DOI: 10.1016/j.tifs.2009.12.002
Google Scholar
[6]
J.G. Ibarra, Y. Tao, J. Walker and C. Griffis, Internal temperature of cooked chicken meat through infrared imaging and time series analysis, Transactions of ASAE, Vol. 42 (1999), pp.1383-1390.
DOI: 10.13031/2013.13301
Google Scholar
[7]
J.M. Laskar, S. Bagavathiappan, M. Sardar, T. Jayakumar, J. Philip and B. Raj, Measurement of thermal diffusivity of solids using infrared thermography, Materials Letters, Vol. 62 (2008), p.2740–2742.
DOI: 10.1016/j.matlet.2008.01.045
Google Scholar
[8]
A. Brosse, P. Naisson, H. Hamdi, J.M. Bergheau, Temperature measurement and heat flux characterization in grinding using thermography, Journal of materials processing technology, Vol. 2 0 1 (2008), p.590–595.
DOI: 10.1016/j.jmatprotec.2007.11.267
Google Scholar
[9]
K. Schurer, A method for measuring infrared emissivities of near-black surfaces at ambient temperatures. Infrared Phys Technol., Vol. 16 (1976), pp.157-163.
DOI: 10.1016/0020-0891(76)90027-0
Google Scholar
[10]
S. Datcu, L. Ibos, Y. Candau, S. Matteï, Improvement of building wall surface temperature measurements by infrared thermography. Infrared PhysTechnol, Vol. 46 (2005), pp.451-467.
DOI: 10.1016/j.infrared.2005.01.001
Google Scholar
[11]
C. Wen and I. Mudawar, Modeling the effects of surface roughness on the emissivity of aluminum alloys, International Journal of heat and mass transfer, Vol. 49 (2006), pp.4279-4289.
DOI: 10.1016/j.ijheatmasstransfer.2006.04.037
Google Scholar
[12]
N. Arora, D. Martins, D. Ruggerio, E. Tousimis, A.J. Swistel, and M.P. Osborne, Effectiveness of a noninvasive digital infrared thermal imaging system in the detection of breast cancer, The American Journal of Surgery, Vol. 196 (2008) pp.523-526.
DOI: 10.1016/j.amjsurg.2008.06.015
Google Scholar
[13]
T. Suesut, N. Nunak, T. Nunak, A. Rotrugsa and Y. Tuppadung, Emissivity measurements on material and equipment in electrical distribution system, 11th International Conference on Control, Automation and Systems (ICCAS 2011), KINTEX, Gyeonggi-do, Korea, 26th – 29th October (2011).
Google Scholar
[14]
D.G. Rao, Fundamentals of food engineering, Baba Barkha Nath., New Delhi., (2010), pp.203-204.
Google Scholar
[15]
M.Q. Brenster, Thermal radiative transfer and properties, John Wiley & Sons, (1992), pp.56-57.
Google Scholar
[16]
M. Fogie, Handbook of mathematical, scientific and engineering: formulas, tables, functions graphs, transforms, Research & Education Association., New Jersey, (1992), pp.814-818.
Google Scholar
[17]
G.D. Saravacos and A.E. Kostaropoulos, Handbook of food processing equipment, Kluwer Acadamic., New York, (2002), p.285.
Google Scholar