Emissivity Estimation Using Thermographic Camera

Article Preview

Abstract:

This paper proposes a method based on the spectra response of IR detectors mounted on thermographic camera for emissivity measurement at various target surface temperatures, while the reflected temperature istaken into account, and also studies on the effect of surface roughness on the emissivity value. The emissivity (ε8-14μm) of general engineering material such as iron, stainless steel, brass, copper and aluminum obtained in this paper are in agreement with other literatures. Finally, results found that the roughness and emissivity of equipment increases with increasing of the operating time.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

380-387

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F.P. Incropera, D.P. Dewitt, T.L. Bergmann and A.S. Lavine. Fundamentals of Heat and Mass Transfer. 6th edition. Willey. Asia. (2006).

Google Scholar

[2] L.D. Campo, R.B. Perez-Saez, L. Gonzalez-Fernandez, X. Esquisabel, I. Fernandez, P. Gonzalez-Martin and M.J. Tello, Emissivity measurements on aeronautical alloys, Journal of alloys and compounds, Vol. 489 (2010), pp.482-487.

DOI: 10.1016/j.jallcom.2009.09.091

Google Scholar

[3] S. Marinetti and P.G. Cesaratto. Emissivity estimation for accurate quatitative thermography, NDT&E International, Vol. 51 (2012), pp.127-134.

DOI: 10.1016/j.ndteint.2012.06.001

Google Scholar

[4] ASTM E 1862-97, Standard test methods for measuring and compensating for reflected temperature using infrared imaging radiometers (2002).

Google Scholar

[5] A.A. Gowen, B.K. Tiwari, P.J. Cullen, K. McDonnell and C.P. ÓDonnell, Applications of thermal imaging in food quality and safety assessment, Trends in food science & technology, Vol. 21 (2010), pp.190-200.

DOI: 10.1016/j.tifs.2009.12.002

Google Scholar

[6] J.G. Ibarra, Y. Tao, J. Walker and C. Griffis, Internal temperature of cooked chicken meat through infrared imaging and time series analysis, Transactions of ASAE, Vol. 42 (1999), pp.1383-1390.

DOI: 10.13031/2013.13301

Google Scholar

[7] J.M. Laskar, S. Bagavathiappan, M. Sardar, T. Jayakumar, J. Philip and B. Raj, Measurement of thermal diffusivity of solids using infrared thermography, Materials Letters, Vol. 62 (2008), p.2740–2742.

DOI: 10.1016/j.matlet.2008.01.045

Google Scholar

[8] A. Brosse, P. Naisson, H. Hamdi, J.M. Bergheau, Temperature measurement and heat flux characterization in grinding using thermography, Journal of materials processing technology, Vol. 2 0 1 (2008), p.590–595.

DOI: 10.1016/j.jmatprotec.2007.11.267

Google Scholar

[9] K. Schurer, A method for measuring infrared emissivities of near-black surfaces at ambient temperatures. Infrared Phys Technol., Vol. 16 (1976), pp.157-163.

DOI: 10.1016/0020-0891(76)90027-0

Google Scholar

[10] S. Datcu, L. Ibos, Y. Candau, S. Matteï, Improvement of building wall surface temperature measurements by infrared thermography. Infrared PhysTechnol, Vol. 46 (2005), pp.451-467.

DOI: 10.1016/j.infrared.2005.01.001

Google Scholar

[11] C. Wen and I. Mudawar, Modeling the effects of surface roughness on the emissivity of aluminum alloys, International Journal of heat and mass transfer, Vol. 49 (2006), pp.4279-4289.

DOI: 10.1016/j.ijheatmasstransfer.2006.04.037

Google Scholar

[12] N. Arora, D. Martins, D. Ruggerio, E. Tousimis, A.J. Swistel, and M.P. Osborne, Effectiveness of a noninvasive digital infrared thermal imaging system in the detection of breast cancer, The American Journal of Surgery, Vol. 196 (2008) pp.523-526.

DOI: 10.1016/j.amjsurg.2008.06.015

Google Scholar

[13] T. Suesut, N. Nunak, T. Nunak, A. Rotrugsa and Y. Tuppadung, Emissivity measurements on material and equipment in electrical distribution system, 11th International Conference on Control, Automation and Systems (ICCAS 2011), KINTEX, Gyeonggi-do, Korea, 26th – 29th October (2011).

Google Scholar

[14] D.G. Rao, Fundamentals of food engineering, Baba Barkha Nath., New Delhi., (2010), pp.203-204.

Google Scholar

[15] M.Q. Brenster, Thermal radiative transfer and properties, John Wiley & Sons, (1992), pp.56-57.

Google Scholar

[16] M. Fogie, Handbook of mathematical, scientific and engineering: formulas, tables, functions graphs, transforms, Research & Education Association., New Jersey, (1992), pp.814-818.

Google Scholar

[17] G.D. Saravacos and A.E. Kostaropoulos, Handbook of food processing equipment, Kluwer Acadamic., New York, (2002), p.285.

Google Scholar