Electrochemical Corrosion Behavior for Friction Stir Welded Al-1.1Mg-0.98Si Alloy with Annealing Time

Article Preview

Abstract:

Recently, demand for environment protection and reduction of energy consumption has led to active development of technology to reduce the weight of transportation devices. Furthermore, due to the development of the ocean leisure industry, there is a increasing number of small shipbuilding including yacht using aluminum. However, there are a lot of problems to be solved in aluminum ship welding from the technological, economic and environmental perspectives. An alternative to solve these problems is the friction stir welding technique. But, inflow frictional heat is generated in case of friction stir welding of 6061-T6 alloy, and the crystalline structure grows, resulting in weak mechanical strength. Accordingly, this study is to improve the mechanical characteristics and corrosion resistance of FSWed 6061-T6 alloy through annealing heat treatment. This study compared the characteristics with time of heat treatment at a constant temperature for the annealing heat treatment. Results of electrochemical experiments, the stir zone in annealing time 60min. showed the low corrosion current density. Micro-Vickers hardness in 60min. presents the higher value than the other conditions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

39-45

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. J. Kim, S. K. Kim and J. C. Park: Surface and Coating Technology Vol. 205 (2010), p.205.

Google Scholar

[2] J. C. Park and S. J. Kim: PhysicaScripta Vol. T139 (2010), p.014038.

Google Scholar

[3] J. C. Park and S. J. Kim: Surface Review and Letters Vol. 17(1)(2010), p.69.

Google Scholar

[4] C. J. Dawes: Welding and Metal Fabrication Vol. 63(1) (1995), p.13.

Google Scholar

[5] W. M. Thomas and C. J. Dawes: Welding Journal USA Vol. 75(3) (1996), p.41.

Google Scholar

[6] K. E. Knipstrom: Welding Journal Vol. 76 (1997), p.55.

Google Scholar

[7] Uzun, C. D. Donne, A. Argagnotto, T. Ghidini and C. Gambaro: Materials and Design Vol. 26 (2005), p.41.

Google Scholar

[8] M. Chen and R. Kovacevic: International Journal of Machine Tools and Manufacture Vol. 44(2004), p.1205.

Google Scholar

[9] W. M. Thomas and E. D. Nicholas: Materials & Design Vol. 18 (1997), p.269.

Google Scholar

[10] A Sanderson, C. S. Punshon and J. D. Russell: Fusion Engineering and Design Vol. 49-50 (2000), p.77.

Google Scholar

[11] O. V. Flores, C. Kennedy, L. E. Murr, D. Brown, S. Pappu, B. M. Nowak and J. C. McClure, Scr. Mater. Vol. 38 (1998), p.703.

Google Scholar

[12] G. Liu, L. E. Murr and J. C Mclure: Master. Sci. Eng. Vol. A271(1999), p.213.

Google Scholar

[13] C. G. Rhodes, M. W. Mahoney, W. H. Bingel, R. A. Spurling and C. C. Bampton: Scr. Master. Vol. 36 (1997), p.69.

Google Scholar

[14] J. C. Park and S. J. Kim: J. Kor. Inst. Surf. Eng. Vol. 42(1) (2009), p.13.

Google Scholar

[15] S. J. Kim and S. K. Jang: J. Kor. Inst. Surf. Eng. Vol. 41(6) (2008), p.341.

Google Scholar

[16] S. J. Lee, M. S. Han and S. J. Kim, Characteristics of FSWed 6061-T6 for Al ship with annealing temperature, The Korean Society of Marine Engineering Proceeding, 2008, 513.

Google Scholar

[17] Y. Li, E. A. Trillo and L. E. Murr: Jour. of Mat. Sci. Letter Vol. 19 (2000), p.1047.

Google Scholar

[18] J. Q. Su, T. W. Nelson and C. J. Sterling: Materials Science and Engineering Vol. 405(1-2) (2006), p.277.

Google Scholar

[19] K. N. Krishnan:J. Mater. Sci. Vol. 37 (2002), p.473.

Google Scholar

[20] Y. S. Sato, H. Kokawa, M. Enomoto, S. Jogan and T. Hashimoto: Metall. and Mater. Trans. Vol. 30A (1999), p.3125.

Google Scholar