[1]
ZHOU Xia, YAO Yunfei, ZHONG Shouming, BIBO Stabilization for stochastic control systems with time delay [J]. Mathematica Applicata,2102, 25(3): 672—677. (In chinese).
Google Scholar
[2]
XU Daoyi, ZHONG Shouming, The BIBO stabilization of multivariable feedback systems[J]. J. UEST China, 1995, 24(1): 90—96.
Google Scholar
[3]
XU Daoyi, ZHONG Shouming, BIBO stabilization of large scale systems[J]. Cont. Theory Appl., 1995, 12(6): 758—763.
Google Scholar
[4]
CAO Kecai, ZHONG Shouming, LIU Biseng, BIBO and robust stabilization for system with time-delay and nonlinear perturbations[J]. J. UEST China, 2003, 32(6): 787—789.
Google Scholar
[5]
ZHONG Shouming, HUANG Yuanqing, BIBO stabilization of nonlinear system with time-delay[J]. J. UEST China, 2000, 32 (6) 655—657.
Google Scholar
[6]
LI Ping, ZHONG Shouming, BIBO stabilization of time-delayed system with nonlinear perturbation[J]. Applied Mathematics and Computation, 2008, 195: 264—269.
DOI: 10.1016/j.amc.2007.04.081
Google Scholar
[7]
LI Ping, ZHONG Shouming, Delay-dependent robust BIBO stabilization of uncertain system via LMI approach[J]. Chaos, Solitons and Fractals, 2009, 40: 1021—1028.
DOI: 10.1016/j.chaos.2007.08.059
Google Scholar
[8]
FU Yuli, LIAO Xiaoxi, BIBO Stabilization of Stochastic Delay Systems With Uncertainty[J]. IEEE Transactions on Automatic control, 2003, 48(1): 133—138.
DOI: 10.1109/tac.2002.806666
Google Scholar
[9]
ZHOU Xia, ZHONG Shouming, Riccati equations and delay-dependent BIBO stabilization of stochastic systems with mixed delays and nonlinear perturbations[J]. Advances in Diffrence Equations, 2010, Article ID 494607, 1—14.
DOI: 10.1186/1687-1847-2010-494607
Google Scholar
[10]
Oboe R, Fiorini P, A design and control environment for internetbased telerobotics[J]. Int.J. Robot. Res 1998, 17: 433-439.
Google Scholar
[11]
Anderson R, Spong M, Bilateral control of teleoperators with time delay[J]. IEEE Trans. Automat. Contr., 1994, 39: 494-501.
DOI: 10.1109/9.24201
Google Scholar