[1]
S. Mustafa, M. Khalid, A. Naeem, N. Rehana, S. Murtaza, Selective removal of chromates by macroporous exchanger Amberlyst A-21, Environ. Technol. 23 (2002) 583-590.
DOI: 10.1080/09593332308618390
Google Scholar
[2]
G. Calvanese, R. Cioffi, L. Santoro, Cement stabilization of tannery sludge using quaternary ammonium salt exchanged bentonite as pre-solidification adsorbent, Environ. Technol. 23 (2002) 1051-1062.
DOI: 10.1080/09593332308618351
Google Scholar
[3]
C.Z. Yu, C.B. Zhang, S.L. Ding, The present conditions of tannery sludge and prospect of composting with sludge, China Leather, 29 (2000) 4-7.
Google Scholar
[4]
L.X. Zhou, A.T. Hu, N.F. Ge, Study on utilization of municipal sewage sludge in farmland and forest land, Acta Ecologica Sinica, 9 (1999) 185-193.
Google Scholar
[5]
S.G. Zhou, S.M. Wang, S.P. Yu, L.X. Zhou, Isolation of Thiobacillus ferrooxidans and its application on heavy metal bioleaching from sewage sludge, Huanjing Kexue, 24 (2003) 56-60.
Google Scholar
[6]
A. Lopez, T. Rotunno, F. Palmisano, R. Passino, G. Tiravanti, P.G. Zambonin, Simultaneous determination of chromium (III), aluminum (III), and iron (II) in tannery sludge acid extracts by reversed-phase high-performance liquid chromatography, Environ. Sci. Technol. 25 (1991).
DOI: 10.1021/es00019a005
Google Scholar
[7]
S.B. Shen, R.D. Tyagi, J.F. Blais, Extraction of Cr(III) and other metals from tannery sludge by mineral acids, Environ. Technol. 22 (2001) 1007-1014.
DOI: 10.1080/09593332208618216
Google Scholar
[8]
G. Macchi, M. Pagano, M. Pettine, M. Santori, G. Tiravanti, A bench study on chromium recovery from tannery sludge, Water Res. 25 (1991) 1019-1026.
DOI: 10.1016/0043-1354(91)90152-g
Google Scholar
[9]
E. Kilic, J. Font, R. Puig, S. Colak, D. Celik, Chromium recovery from tannery sludge with saponin and oxidative remediation, J. Hazard. Mater. 185 (2011) 456-462.
DOI: 10.1016/j.jhazmat.2010.09.054
Google Scholar
[10]
S. Babel, D.D. Dacera, Heavy metal removal from contaminated sludge for land application: A review, Waste Manage. 26 (2006) 988-1004.
DOI: 10.1016/j.wasman.2005.09.017
Google Scholar
[11]
S.G. Zhou, L.X. Zhou, S.M. Wang, D. Fang, Removal of Cr from tannery sludge by bioleaching method, J. Environ. Sci. 18 (2006) 885-890.
DOI: 10.1016/s1001-0742(06)60009-0
Google Scholar
[12]
F. Gode, E. Pehlivan, A comparative study of two chelating ion-exchange resins for the removal of chromium(III) from aqueous solution, J. Hazard. Mater. 100 (2003) 231-243.
DOI: 10.1016/s0304-3894(03)00110-9
Google Scholar
[13]
S. Kocaoba, G. Akcin, Removal of chromium (III) and cadmium (II) from aqueous solutions, Desalination 180 (2005) 151-156.
DOI: 10.1016/j.desal.2004.12.034
Google Scholar
[14]
S.Y. Kang, J.U. Lee, S.H. Moon, K.W. Kim, Competitive adsorption characteristics of Co2+, Ni2+, and Cr3+ by IRN-77 cation exchange resin in synthesized wastewater, Chemosphere 56 (2004) 141-147.
DOI: 10.1016/j.chemosphere.2004.02.004
Google Scholar
[15]
M. Amara, H. Kerdjoudj, Separation of metallic ions using cation exchange resin in the presence of organic macrocation - Mechanism of surface layer formation, Anal. Chim. Acta 508 (2004) 247-253.
DOI: 10.1016/j.aca.2003.11.071
Google Scholar
[16]
M. Amara, H. Kerdjoudj, Separation and recovery of heavy metals using a cation-exchange resin in the presence of organic macro-cations, Desalination 168 (2004) 195-200.
DOI: 10.1016/j.desal.2004.06.187
Google Scholar
[17]
A. Demirbas, E. Pehlivan, F. Gode, T. Altun, G. Arslan, Adsorption of Cu(II), Zn(II), Ni(II), Pb(II), and Cd(II) from aqueous solution on amberlite IR-120 synthetic resin, J. Colloid Interface Sci. 282 (2005) 20-25.
DOI: 10.1016/j.jcis.2004.08.147
Google Scholar
[18]
P.A. Riveros, The extraction of Fe(III) using cation-exchange carboxylic resins, Hydrometallurgy 72 (2004) 279-290.
DOI: 10.1016/s0304-386x(03)00181-6
Google Scholar
[19]
K. Vaaramaa, J. Lehto, Removal of metals and anions from drinking water by ion exchange, Desalination 155 (2003) 157-170.
DOI: 10.1016/s0011-9164(03)00293-5
Google Scholar
[20]
F.J. Alguacil, M. Alonso, L.J. Lozano, Chromium(III) recovery from waste acid solution by ion exchange processing using Amberlite IR-120 resin: batch and continuous ion exchange modelling, Chemosphere 57 (2004) 789-793.
DOI: 10.1016/j.chemosphere.2004.08.085
Google Scholar
[21]
S. Mustafa, K.H. Shah, A. Naeem, M. Waseem, T. Ahmad, S. Khan, Co-Ion Effect on Cr(3+) Sorption by Amberlyst-15(H(+), Water Air Soil Pollut. 217 (2011) 57-65.
DOI: 10.1007/s11270-010-0567-x
Google Scholar
[22]
S. Mustafa, K.H. Shah, A. Naeem, T. Ahmad, M. Waseem, Counter-ion effect on the kinetics of chromium (III) sorption by Amberlyst. 15 in H(+), Li(+), Na(+), Ca(++), Al(+++) forms, Desalination 264 (2010) 108-114.
DOI: 10.1016/j.desal.2010.07.012
Google Scholar
[23]
S.K. Sahu, P. Meshram, B.D. Pandey, V. Kumar, T.R. Mankhand, Removal of chromium(III) by cation exchange resin, Indion 790 for tannery waste treatment, Hydrometallurgy 99 (2009) 170-174.
DOI: 10.1016/j.hydromet.2009.08.002
Google Scholar
[24]
S. Mustafa, K.H. Shah, A. Naeem, M. Waseem, M. Tahir, Chromium (III) removal by weak acid exchanger Amberlite IRC-50 (Na), J. Hazard. Mater. 160 (2008) 1-5.
DOI: 10.1016/j.jhazmat.2008.02.071
Google Scholar
[25]
S. Rengaraj, K.H. Yeon, S.H. Moon, Removal of chromium from water and wastewater by ion exchange resins, J. Hazard. Mater. 87 (2001) 273-287.
DOI: 10.1016/s0304-3894(01)00291-6
Google Scholar
[26]
C. Namasivayam, K. Ranganathan, Removal of Cd(II) from wastewater by adsorption on waste, Fe(III)/Cr(III) hydroxide, Water Res. 29 (1995) 1737-1744.
DOI: 10.1016/0043-1354(94)00320-7
Google Scholar
[27]
S. Lagergren, Zur theorie der sogenannten adsorption geloster stoffe, Kungliga Svenska Vetenskapsakademiens Handlingar 24 (1898) 1-39.
Google Scholar
[28]
F. Gode, E. Pehlivan, Removal of chromium(III) from aqueous solutions using Lewatit S 100: The effect of pH, time, metal concentration and temperature, J. Hazard. Mater. 136 (2006) 330-337.
DOI: 10.1016/j.jhazmat.2005.12.021
Google Scholar
[29]
Y.S. Ho, D.A.J. Wase, C.F. Forster, Batch nickel removal from aqueous solution by sphagnum moss peat, Water Res. 29 (1995) 1327-1332.
DOI: 10.1016/0043-1354(94)00236-z
Google Scholar
[30]
S. Kocaoba, G. Akcin, A kinetic investigation of chromium, Adsorption 9 (2003) 143-151.
Google Scholar
[31]
S. Rengaraj, C.K. Joo, Y. Kim, J. Yi, Kinetics of removal of chromium from water and electronic process wastewater by ion exchange resins: 1200H, 1500H and IRN97H, J. Hazard. Mater. 102 (2003) 257-275.
DOI: 10.1016/s0304-3894(03)00209-7
Google Scholar
[32]
H. Stunzi, W. Marty, Early stages of the hydrolysis of chromium (III) in aqueous solution. 1. Characterization of a tetrameric species, Inorg. Chem. 22 (1983) 2145-2150.
DOI: 10.1021/ic00157a012
Google Scholar
[33]
M.D. Lanagan, D.C. Ibana, The solvent extraction and stripping of chromium with Cyanex (R) 272, Miner. Eng. 16 (2003) 237-245.
DOI: 10.1016/s0892-6875(03)00006-2
Google Scholar
[34]
A. Netzer, D.E. Hughes, Adsorption of copper, lead and cobalt by activated carbon, Water Res. 18 (1984) 927-933.
DOI: 10.1016/0043-1354(84)90241-0
Google Scholar
[35]
K. Periasamy, K. Srinivasan, K. Murugan P, Studies on chromium (VI) removal by activated groundnut husk carbon, Indian J. Environ. Health 33 (1991) 433-439.
Google Scholar
[36]
Z. Hubicki, A. Jakowicz, A. Lodyga, Application of the ion-exchange method to remove metallic ions from waters and sewages, Stud. Surf. Sci. Catal. 120 (1999) 497-531.
DOI: 10.1016/s0167-2991(99)80371-1
Google Scholar