[1]
J.W. Yeh, S.K. Chen, S.H. Lin, et al. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. ADVANCED ENGINEERING MATERIALS, 2004, 6(5): 299-303.
DOI: 10.1002/adem.200300567
Google Scholar
[2]
J.W. Yeh. Recent Progress in High-Entropy Alloys. Ann. Chim. Sci. Mat., 2006, 31(6): 633-648.
DOI: 10.3166/acsm.31.633-648
Google Scholar
[3]
J. W. Yeh, Y.L. Chen, S.J. Lin, et al. High-Entropy Alloys - A New Era of Exploitation. Materials Science Froum, 2007, 560: 1-9.
Google Scholar
[4]
W. H. Wu, C. C. Yang, J. W. Yeh. Industrial Development of High-Entropy Alloys. Ann. Chim. Sci. Mat., 2006, 31(6): 734-747.
DOI: 10.3166/acsm.31.737-747
Google Scholar
[5]
B. Cantor. High-Entropy Alloys. Encyclopedia of Materials: Science and Technology(Second Edition), 2011, 1-3.
Google Scholar
[6]
K. B. Zhang, Z. Y. Fu, J. Y. Zhang, et al. Microstructure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys. Materials Science and Engineering A, 2009, 508: 214-219.
Google Scholar
[7]
Y. Y. Chen, T. Duval, U.D. Hung, et al. Microstructure and electrochemical properties of high entropy alloys - a comparison with type-304 stainless steel. Corrosion Science, 2005, 47: 2257-2279.
DOI: 10.1016/j.corsci.2004.11.008
Google Scholar
[8]
C. Y. Hsu, C. C. Juan, W. R. Wang, et al. On the superior hot hardness and softening resistance of AlCoCrxFeMo0. 5Ni high-entropy alloys. Materials Science and Engineering A, 2011, 528: 3581-3588.
DOI: 10.1016/j.msea.2011.01.072
Google Scholar
[9]
C.P. Lee, Y. Y. Chen, C. Y. Hsu, et al. Enhancing pitting corrosion resistance of AlxCrFe1. 5MnNi0. 5 high-entropy alloys by anodic treatment in sulfuric acid. Thin Solid Films, 2008, 517: 1301-1305.
DOI: 10.1016/j.tsf.2008.06.014
Google Scholar
[10]
C. J. Tong, M. R. Chen, S. K. Chen, et al. Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurgical and Materials Transactions A, 2005, 36A: 1263-1271.
DOI: 10.1007/s11661-005-0218-9
Google Scholar
[11]
C. M. Lin, H. L. Tsai. Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0. 5CoCrFeNi alloy. Intermetallics, 2011, 19: 288-294.
DOI: 10.1016/j.intermet.2010.10.008
Google Scholar
[12]
S. Varalakshmi, M. Kamaraj, B. S. Murty. Formation and stability of equiatomic and nonequiatomic nanocrystalline CuNiCoZnAlTi high-entropy alloys by mechanical alloying. Metallurgical and Materials Transactions A, 2010, 41A: 2703-2709.
DOI: 10.1007/s11661-010-0344-x
Google Scholar
[13]
J. M. Wu, S. J. Lin, J. W. Yeh, et al. Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content. Wear, 2006, 261: 513-519.
DOI: 10.1016/j.wear.2005.12.008
Google Scholar
[14]
C. Y. Hsu, T. S. Sheu, J. W. Yeh, et al. Effect of iron content on wear behavior of AlCoCrFexMo0. 5Ni high-entropy alloys. Wear, 2010, 268: 653-659.
DOI: 10.1016/j.wear.2009.10.013
Google Scholar
[15]
O. N. Senkov, G. B. Wilks, J. M. Scott, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics, 2011, 19: 698-706.
DOI: 10.1016/j.intermet.2011.01.004
Google Scholar