Photon Cascade Emission of Pr3+-Doped K2YZr(PO4)3 Phosphor

Article Preview

Abstract:

In present work, K2Y1-xZr (PO4)3:Prx3+ (0.01x0.05) samples were prepared by solid-state reaction method and their photoluminescence properties were investigated in ultra-violet (UV) and vacuum ultra-violet (VUV) region. The photon cascade luminescence (PCL) of Pr3+ had been observed. All the results indicate that, in this Pr3+-doped K2YZr (PO4)3 phosphor, even if the 1S0 state is higher than the lowest 4f5d energy level, the photon cascade emission (PCE) process for Pr3+ still could occur under 147 nm and 234 nm (4f15d1 state) excitation. Therefore, K2YZr (PO4)3 was an ideal host for Pr3+ to implement the PCE process successfully.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

677-681

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. van der Kolk, P. Dorenbos, C. W. E. van Eijk, Opt. Commun. 197 (2001) 317.

Google Scholar

[2] Fangtian You, Shihua Huang, Chunxia Meng, Dawei Wang, Jianhua Xu, Yan Huang, Guobin Zhang, J. Lumin. 122-123 (2007) 58.

Google Scholar

[3] I. Sokólska, S. Kück, Chem. Phys. 270 (2001) 355.

Google Scholar

[4] A.M. Srivastava, S.J. Duclos, Chem. Phys. Lett. 275 (1997) 453.

Google Scholar

[5] Akira Yoshikawa, Kei Kamada, Martin Nikl, Kenji Aoki, Hiroki Sato, Jan Pejchal, Tsuguo Fukuda, J. Cryst. Growth. 285 (2005) 445.

DOI: 10.1016/j.jcrysgro.2005.08.052

Google Scholar

[6] N. Martin, R. Mahiou, P. Boutinaud, J.C. Cousseins, J. Alloys. Compd. 323-324 (2001) 303.

DOI: 10.1016/s0925-8388(01)01119-7

Google Scholar

[7] Dawei Wang, Shihua Huang, Fangtian You, Shiqun Qi, Yibing Fu, Guobin Zhang, Jianhua Xu , Yan Huang, J. Lumin. 122-123 (2007) 450.

Google Scholar

[8] A.P. Vink, E. van der Kolk, P. Dorenbos, C.W.E. van Eijk, J. Alloys. Compd. 341 (2002) 338.

DOI: 10.1016/s0925-8388(02)00033-6

Google Scholar

[9] Maarten L.H. ter Heerdt, E. van der Kolk, William M. Yen, Alok M. Srivastava, J. Lumin. 100 (2002) 107.

Google Scholar

[10] A.M. Srivastava, A.A. Setlur, H.A. Comanzo, M.E. Hannah, P.A. Schmidt, U. Happek, J. Lumin. 129 (2009) 126.

Google Scholar

[11] Fangtian You, Shihua Huang, Chunxia Meng, Dawei Wang, Jianhua Xu, Yan Huang, Guobin Zhang, J. Lumin. 122-123 (2007) 58.

Google Scholar

[12] Xiao-jun Wang, Shihua Huang, Lizhu Lu, William M. Yen, Appl. Phys. Lett. 79 (2001) 14.

Google Scholar

[13] Shinji Okamoto, Hiroshi Kobayashi, J. Appl. Phys. 86 (1999) 5594.

Google Scholar

[14] A. M. Srivastavaa, W. W. Beers, J. Lumin. 71 (1997) 285.

Google Scholar

[15] E. Radzhabov, J. Lumin. 2009. 04. 071.

Google Scholar

[16] A.M. Srivastava, J. Lumin. 2009. 4. 14.

Google Scholar

[17] V. N. Makhov, N. M. Khaidukov, D. Lo, M. Kirm, G. Zimmerer, J. Lumin. 102-103 (2003) 638.

DOI: 10.1016/s0022-2313(02)00606-3

Google Scholar

[18] Stefan Kück, Irena Sokólska, Markus Henke, Eugen Osiac, Chem. Phys. 310 (2005) 139.

Google Scholar