[1]
J. R. Fricke, Lodengraf damping: An advanced vibration damping technology, Journal of Sound and Vibration. 34 (2000) 22-27.
Google Scholar
[2]
T. Chen, et al., Dissipation mechanisms of non-obstructive particle damping using discrete element method, Proceedings of SPIE International Symposium on Smart Structures and Materials, 2001, Newport, California, 5-8 March.
Google Scholar
[3]
P. Lieber and D. P. Jensen, An acceleration damper: development, design and some applications, Transactions of the American Society of Mechanical Engineers. 67 (1945) 523-530.
DOI: 10.1115/1.4018316
Google Scholar
[4]
M. R. Duncan, C. R. Wassgren, and C. M. Krousgrill, The damping performance of a single particle impact damper, Journal of Sound and Vibration. 286 (2005) 123-144.
DOI: 10.1016/j.jsv.2004.09.028
Google Scholar
[5]
R. Ehrgott, H. V. Panossian, and G. Davis, Modeling techniques for evaluating the effectiveness of particle damping in turbomachinery, International Journal of Heat and Fluid Flow. 28 (2009) 161-177.
DOI: 10.2514/6.2009-2690
Google Scholar
[6]
S. S. Simonian, V. S. Camelo, and J. D. Sienkiewicz, Disturbance suppression using particle dampers, 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2008, Schaumburg, Illinois, 7-10 April.
DOI: 10.2514/6.2008-2105
Google Scholar
[7]
H. V. Panossian, Non-obstructive particle damping experience and capabilities, Proceedings of IMAC-XX : a conference on structural dynamics 2002, Los Angeles, California 4-7 February.
Google Scholar
[8]
M. Sánchez, G. Rosenthal, and L. A. Pugnaloni, Universal response of optimal granular damping devices, Journal of Sound and Vibration. 331 (2012) 4389-4394.
DOI: 10.1016/j.jsv.2012.05.001
Google Scholar
[9]
B. L. Fowler, E. M. Flint, and S. E. Olson, Effectiveness and predictability of particle damping, SPIE's 7th Annual International Symposium on Smart Structures and Materials, 2000, Melbourne, Australia, 13-15 December.
DOI: 10.1117/12.384576
Google Scholar
[10]
E. M. Flint, Experimental measurements of particle damping effectiveness under centrifugal loads, Proceedings of the 4th National Turbine Engine High Cycle Fatigue Conference, 1999, Monterey, California, 9-11 February.
Google Scholar
[11]
M. Inoue, et al., Effectiveness of the Particle Damper with Granular Materials, 3rd International Conference on Integrity, Reliability and Failure, 2009, Porto, Portugal 20-24 July.
Google Scholar
[12]
I. Yokomichi, T. Yoshito, and S. N. Yun, Particle Damping with Granular Materials for Multi-body System, ICSV 15 International Congress on Sound and Vibration, 2008, Daejeon, Korea, 6-10 July.
Google Scholar
[13]
R. D. Friend and V. K. Kinra, Particle impact damping, Journal of Sound and Vibration. 233 (2000) 93-118.
DOI: 10.1006/jsvi.1999.2795
Google Scholar
[14]
M. Trigui, et al., An experimental study of a multi-particle impact damper, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 223 (2009) 2029-(2038).
DOI: 10.1243/09544062jmes1400
Google Scholar
[15]
C. Saluena, T. Poschel, and S. E. Esipov, Dissipative properties of vibrated granular materials, Physical Review E. 59 (1998) 4422-4425.
DOI: 10.1103/physreve.59.4422
Google Scholar
[16]
Z. Lu, X. Lu, and S. F. Masri, Studies of the performance of particle dampers under dynamic loads, Journal of Sound and Vibration. 329 (2010) 5415-5433.
DOI: 10.1016/j.jsv.2010.06.027
Google Scholar
[17]
P. A. Cundall and O. D. L. Strack, A discrete numerical model for granular assemblies, Geotechnique. 29 (1979) 47-65.
DOI: 10.1680/geot.1979.29.1.47
Google Scholar
[18]
V. P. Legeza, Dynamics of vibroprotective systems with roller dampers of low-frequency vibrations, Strength of Materials. 36 (2004) 185-194.
DOI: 10.1023/b:stom.0000028310.36487.e8
Google Scholar
[19]
P. A. Cundall and O. D. L. Strack, The development of constitutive laws for soil using the distinct element method, Numerical Methods in Geomechanics. 1 (1979) 289-317.
Google Scholar
[20]
X. M. Bai, et al., Investigation of particle damping mechanism via particle dynamics simulations, Granular Matter. 11 (2009) 417-429.
DOI: 10.1007/s10035-009-0150-6
Google Scholar
[21]
B. L. Fowler, E. M. Flint, and S. E. Olson, Design methodology for particle damping, SPIE's 8th Annual International Symposium on Smart Structures and Materials, 2001, Newport, California, 5-8 March.
Google Scholar
[22]
M. Saeki, Analytical study of multi-particle damping, Journal of Sound and Vibration. 281 (2005) 1133-1144.
DOI: 10.1016/j.jsv.2004.02.034
Google Scholar
[23]
K. Mao and M. Y. Wang, Simulation and Characterization of Particle Damping in Transient Vibrations, Journal of Vibration and Acoustics. 126 (2004) 202-211.
DOI: 10.1115/1.1687401
Google Scholar
[24]
C. X. Wong, M. C. Daniel, and J. A. Rongong, Energy dissipation prediction of particle dampers, Journal of Sound and Vibration. 319 (2009) 91-118.
DOI: 10.1016/j.jsv.2008.06.027
Google Scholar
[25]
L. S. Fan and C. Zhu, Principles of gas-solid flows, Cambridge University Press, Cambridge, (1998).
Google Scholar
[26]
C. J. Wu, W. H. Liao, and M. Y. Wang, Modeling of granular particle damping using multiphase flow theory of gas-particle, Journal of Vibration and Acoustics. 126 (2004) 196-201.
DOI: 10.1115/1.1688763
Google Scholar
[27]
X. Fang and J. Tang, Granular damping in forced vibration: qualitative and quantitative analyses, Journal of Vibration and Acoustics. 128 (2006) 489-500.
DOI: 10.1115/1.2203339
Google Scholar
[28]
C. J. Wu, R. C. Yang, and D. Q. Wang, An improved of granular particle damping using multiphase flow theory of gas-particle, 20th International Congress on Sound & Vibration, 2013, Bangkok, Thailand, 7-11 July.
Google Scholar
[29]
C. J. Wu, Yang, R. C., and Wang, D. Q, Prediction on vibration response of a cantilever particle-damping beam based on two-phase flow theory of gas-particle, Chinese Journal of Mechanical Engineering. 49 (2013) 53-61.
DOI: 10.3901/jme.2013.10.053
Google Scholar