[1]
G. Centi, S. Perathoner, Opportunities and prospects in the chemical recycling of carbon dioxide to fuels, Catal. Today 148 (2009) 191-205.
DOI: 10.1016/j.cattod.2009.07.075
Google Scholar
[2]
Z. L. Jin, L. Qian, G. X. Lv, CO2 Chemistry-actuality and expectation, Progress in chemistry 22 (2010) 1102-1115.
Google Scholar
[3]
W. Wang, S. P. Wang, X. B. Ma, Recent advances in catalytic hydrogenation of carbon dioxide, Gong, Chem. Soc. Rev. 40 (2011) 3703-3727.
DOI: 10.1039/c1cs15008a
Google Scholar
[4]
C. Y. Hao, S. P Wang, M. S. Li, L. Q. Kang, X. B. Ma, Hydrogenation of CO2 to formic acid on supported ruthenium catalysts, Catal. Today 160 (2011) 184-190.
DOI: 10.1016/j.cattod.2010.05.034
Google Scholar
[5]
C. Federsel, R. Jackstell and M. Beller, State-of-the-Art catalysts foryydrogenation of Carbon Dioxide, Angew. Chem., Int. Ed. 49 (2010) 6254-6257.
DOI: 10.1002/anie.201000533
Google Scholar
[6]
G. Y. Zhao, F. Joó, Free formic acid by hydrogenation of carbon dioxide in sodium formate solutions, Catal. Commun. 14 ( 2011) 74-76.
DOI: 10.1016/j.catcom.2011.07.017
Google Scholar
[7]
M.W. Farlow, H. Adkins, The hydrogenation of carbon dioxide and a correction of the reported synthesis of urethans, J. Am. Chem. Soc. 57 (1935), 2222-2223.
DOI: 10.1021/ja01314a054
Google Scholar
[8]
P.G. Jessop, P. Hsiao, T. Ikariya, R. Noyori, Homogeneous catalysis in supercritical fluids: hydrogenation of supercritical carbon dioxide to formic acid, alkyl formates, and formamides J. Am. Chem. Soc. 118 (1996) 344-355.
DOI: 10.1021/ja953097b
Google Scholar
[9]
R. Fornika, H. Gkrls, B. Seemann, W.J.J. Leitner, Complexes [(P2)Rh(hfacac)](P2= bidentate chelating phosphane, hfacac = hexafluoroacetylacetonate) as catalysts for CO2 hydrogenation: correlations between solid state structures, 103Rh NMR shifts and catalytic activities, Chem. Soc. Chem. Commun. (1995).
DOI: 10.1039/c39950001479
Google Scholar
[10]
Y.P. Zhang, J.H. Fei, Y.M. Yu, Silica immobilized ruthenium catalyst used for carbon dioxide hydrogenation to formic acid (I): the effect of functionalizing group and additive on the catalyst performance, Catal. Commun. 5 (2004) 643-646.
DOI: 10.1016/j.catcom.2004.08.001
Google Scholar
[11]
Baiker, Utilization of carbon dioxide in heterogeneous catalytic synthesis, Appl. Organ. Chem. 14 (2000) 751-762.
DOI: 10.1002/1099-0739(200012)14:12<751::aid-aoc85>3.0.co;2-j
Google Scholar
[12]
Y.M. Yu, J.H. Fei, Y.P. Zhang, Immobilized Ruthenium Catalyst for Carbon Dioxide Hydrogenation, Chin. Chem. Lett. 17 (2006) 1097-1100.
Google Scholar
[13]
J. G. Lv, J. Zhang, W. P. Ding, B. Shen, X. F. Guo, Synthesis and Characterization of Boehmite AlOOH Nanotubes, Chin. J. Inorg. Chem. 23 (2007) 897-900.
Google Scholar
[14]
N Liu, L. Nie, N. H. Xue, L. M. Peng, X. F. Guo, W. P. Ding, Molybdenum nitride supported on zeolite for ammonia synthesis, Chem Cat Chem. 2 (2010)167-174.
Google Scholar
[15]
P. Betancourt, A. Rives, R. Hubaut, C.E. Scott, J. Goldwasser, A study of the ruthenium-alumina system, Appl. Catal. A 170 (1998) 307-314.
DOI: 10.1016/s0926-860x(98)00061-1
Google Scholar