Hydrothermal Synthesis of CoFe2O4 Nanoparticles and their Magnetic Properties

Article Preview

Abstract:

CoFe2O4 (CFO) nanoparticles was synthesized by a simple hydrothermal method using NaOH solution as a mineralizer at 200 °C for 4 h. It was found that CFO particle sizes decreased firstly and then increased with the increasing of NaOH concentration, and had a minumum value about 10-20 nm when selected 4 mol/L NaOH solution, indicating the NaOH concentration played an important role in controlling the particle size of CFO powders. The room temperature magnetic measurements showed that the saturation magnetization value was 48 emu/g, which is less than the bulk value. The synthesis method is possible to be a general approach for the preparation of other spinel ferrite nanoparticles.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 821-822)

Pages:

1358-1361

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.V.M. Jacintho, A.G. Brolo, P. Corio, P.A.Z. Suarez, J.C. Rubim: J. Phys. Chem. C Vol. 113, (2009) p.7684.

Google Scholar

[2] P. Pradhan, J. Giri, G. Samanta, H.D. Sarma, K.P. Mishra, J. Bellare, R. Banerjee, D. Bahadur: J. Biomed. Mater. Res. Part B Appl. Biomater. Vol. 81B, (2007) p.12.

DOI: 10.1002/jbm.b.30630

Google Scholar

[3] J.H. Lee, Y.M. Huh, Y.W. Jun, J.W. Seo, J.T. Jang, H.T. Song, S. Kim, E.J. Cho, H.G. Yoon, J.S. Suh, J. Cheon: Nat. Med. Vol. 13, (2007) p.95.

Google Scholar

[4] A.C. Tedesco, D.M. Oliveira, Z.G.M. Lacava, R.B. Azevedo, E.C.D. Lima, C. Gansau, N. Buske, P.C. Morais: J. Appl. Phys. Vol. 93, (2003) p.6704.

Google Scholar

[5] N. Sivakumar, A. Narayanasamy, K. Shinda, C.N. Chinnasamy, B. Jeyadevan: J. Appl. Phys. Vol. 102, (2007) p.013916.

Google Scholar

[6] K.J. Kim, H.S. Lee, M.H. Lee, S.H. Lee: J. Appl. Phys. Vol. 91, (2002) p.9974.

Google Scholar

[7] J.A. Paulsen, A.P. Ring, C.C.H. Lo, J.E. Snyderb, D.C. Jiles: J. Appl. Phys. Vol. 97, (2005) p.044502.

Google Scholar

[8] C.S. Kim, Y.S. Yi, K.T. Park, H. Namgung, J.G. Lee: J. Appl. Phys. Vol. 85, (1999) p.5223.

Google Scholar

[9] M.M. Rashad, R.M. Mohamed, H.E. Shall: J. Mater. Proc. Technol. Vol. 198, (2008) p.139.

Google Scholar

[10] L. BenTahar, L.S. Smiri, M. Artus, A.L. Joudrier, F. Herbst, M.J. Vaulay, S. Ammar, F. Fie´ vet: Mater. Res. Bull. Vol. 42, (2007) p.1888.

Google Scholar

[11] X.H. Li, C.L. Xu, X.H. Han, L. Qiao, T. Wang, Fa.S. Li: Nanoscale Res. Lett. Vol. 5, (2010) p.1039.

Google Scholar

[12] J.H. Peng, M. Hojamberdiev, Y.H. Xu, B.W. Cao, J. Wang, H. Wu: J. Magn. Magn. Mater. Vol. 323, (2011) p.133.

Google Scholar