[1]
N. Hiroyoshi, H. Miki, T. Hirajima, M. Tsunekawa, Enhancement of chalcopyrite leaching by ferrous ions in acidic ferric sulfate solutions, Hydrometallurgy 60 (2001) 185-197.
DOI: 10.1016/s0304-386x(00)00155-9
Google Scholar
[2]
Å. Sandström, A. Shchukarev, J. Paul, XPS characterisation of chalcopyrite chemically and bio-leached at high and low redox potential, Miner. Eng. 18 (2005) 505-515.
DOI: 10.1016/j.mineng.2004.08.004
Google Scholar
[3]
W. Qin, C. Yang, S. Lai, J. Wang, K. Liu, B. Zhang, Bioleaching of chalcopyrite by moderately thermophilic microorganisms, Bioresour. Technol. 129 (2013) 200-208.
DOI: 10.1016/j.biortech.2012.11.050
Google Scholar
[4]
C. Liang, J. Xia, Y. Yang, Z. Nie, X. Zhao, L. Zheng, C. Ma, Y. Zhao, Characterization of the thermo-reduction process of chalcopyrite at 65 °C by cyclic voltammetry and XANES spectroscopy, Hydrometallurgy 107 (2011) 13-21.
DOI: 10.1016/j.hydromet.2011.01.011
Google Scholar
[5]
E.M. Arce, I. González, A comparative study of electrochemical behavior of chalcopyrite, chalcocite and bornite in sulfuric acid solution, Int. J. Miner. Process. 67 (2002) 17-28.
DOI: 10.1016/s0301-7516(02)00003-0
Google Scholar
[6]
W.Q. Qin, J. Wang, Y.S. Zhang, S.J. Zhen, H. Shang, Q. Liu, H.B. Shi, J.W. Zhang, G.Z. Qiu, Electrochemical Behavior of Massive Bornite Bioleached Electrodes in the Presence of Acidithiobacillus Ferrooxidans and Acidithiobacillus Caldus, Adv. Mater. Res. 71-73 (2009).
DOI: 10.4028/www.scientific.net/amr.71-73.417
Google Scholar
[7]
M. Eghbalnia, D.G. Dixon, Electrochemical study of leached chalcopyrite using solid paraffin-based carbon paste electrodes, Hydrometallurgy 110 (2011) 1-12.
DOI: 10.1016/j.hydromet.2011.07.009
Google Scholar
[8]
A.E. Elsherief, The influence of cathodic reduction, Fe2+ and Cu2+ ions on the electrochemical dissolution of chalcopyrite in acidic solution, Miner. Eng. 15 (2002) 215-223.
DOI: 10.1016/s0892-6875(01)00208-4
Google Scholar
[9]
W. Zeng, G. Qiu, H. Zhou, M. Chen, Electrochemical behaviour of massive chalcopyrite electrodes bioleached by moderately thermophilic microorganisms at 48 °C, Hydrometallurgy 105 (2011) 259-263.
DOI: 10.1016/j.hydromet.2010.10.012
Google Scholar
[10]
Y.L. Mikhlin, Y.V. Tomashevich, I.P. Asanov, A.V. Okotrub, V.A. Varnek, D.V. Vyalikh, Spectroscopic and electrochemical characterization of the surface layers of chalcopyrite (CuFeS2) reacted in acidic solutions, Appl. Surf. Sci. 225 (2004).
DOI: 10.1016/j.apsusc.2003.10.030
Google Scholar
[11]
G.W. Warren, H.J. Sohn, M.E. Wadsworth, T.G. Wang, The effect of electrolyte composition on the cathodic reduction of CuFeS2, Hydrometallurgy 14 (1985) 133-149.
DOI: 10.1016/0304-386x(85)90030-1
Google Scholar
[12]
D. Nava, I. González, D. Leinen, J.R. Ramos-Barrado, Surface characterization by X-ray photoelectron spectroscopy and cyclic voltammetry of products formed during the potentiostatic reduction of chalcopyrite, Electrochim. Acta 53 (2008).
DOI: 10.1016/j.electacta.2008.01.088
Google Scholar
[13]
D. Nava, I. González, Electrochemical characterization of chemical species formed during the electrochemical treatment of chalcopyrite in sulfuric acid, Electrochim. Acta 51 (2006) 5295-5303.
DOI: 10.1016/j.electacta.2006.02.005
Google Scholar
[14]
M. Lee, M. Nicol, P. Basson, Cathodic processes in the leaching and electrochemistry of covellite in mixed sulfate–chloride media, J. Appl. Electrochem. 38 (2008) 363-369.
DOI: 10.1007/s10800-007-9447-5
Google Scholar