Broadband Light Harvesting Enhancement in Thin Film Solar Cells with Surface and Back Reflector Grating Nanostructures

Article Preview

Abstract:

Nanostructures with top subwavelength hybrid dielectric gratings and metallic triangle back reflector in Si thin film solar cells (TFSCs) are introduced in this paper. Compared with the studied light-trapping structures with normal surface and bottom gratings, our optimized structure has a better performance. We can achieve above 26 percent average cell efficiency enhancement in contrast to the normal flat cells and about 40 percent increase with the transverse magnetic (TM) polarized irradiation only.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

125-130

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Söderström, F. J. Haug, X. Niquille, V. Terrazzoni, and C. Ballif, Appl. Phys. Lett. 94(6), 063501 (2009).

DOI: 10.1063/1.3079414

Google Scholar

[2] J. Y. Huang, C. Y. Lin, C. H. Shen, J. M. Shieh, and B. T. Dai, Sol. Energy Mater. Sol. Cells 98, 277–282 (2012).

Google Scholar

[3] M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, Prog. Photovoltaics. 16, 61-67 (2008).

Google Scholar

[4] Y. Kanamori, M. Sasaki, and K. Hane, Opt. Lett. 24, 1422-1424 (1999).

Google Scholar

[5] C. C. Striemer and P. M. Fauchet, Dynamic etching of silicon for broadband antireflection applications, Appl. Phys. Lett. 81, 2980 (2002).

DOI: 10.1063/1.1514832

Google Scholar

[6] Y. M. Song, S. Y. Bae, J. S. Yu, and Y. T. Lee, Opt. Lett. 34, 1702-1704 (2009).

Google Scholar

[7] Hitoshi Sai, Yoshiaki Kanamori, Koji Arafune, Yoshio Ohshita and Masafumi Yamaguchi, Prog. Photovoltaics 15, 415-423 (2007).

DOI: 10.1002/pip.754

Google Scholar

[8] Young Min Song, Jae Su Yu, and Yong Tak Lee, Opt. Lett. 34, 276-278 (2010).

Google Scholar

[9] Wenli Bai, Qiaoqiang Gan, Filbert Bartoli, Jing Zhang, Likang Cai, Yidong Huang, and Guofeng Song, Opt. Lett. 34, 3725-3727 (2009).

Google Scholar

[10] Ludovic Escoubas, and Jean-Jacques Simon, Appl. Opt. 50, C329-C339 (2010).

Google Scholar

[11] W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, Phys. Rev. B 54 6227–6244 (1996).

Google Scholar

[12] S. Collin, F. Pardo, R. Teissier, and J. -L., Phys. Rev. B 63 033107 (2001).

Google Scholar

[13] A. Jorio, and A. G. Souza Filho, Phys. Rev. B 66, 155412 (2002).

Google Scholar

[14] Y. Pang, C. Genet, and T. W. Ebbesen, Opt. Commun 280, 10 -15 (2007).

Google Scholar

[15] V. M. Shalaev and S. Kawata, eds., Nanophotonics with Surface Plasmons (Elsevier, 2007).

Google Scholar

[16] M. G. Moharam and T. K. Gaylord, J. Opt. Soc. Am. 72, 1385–1392 (1982).

Google Scholar

[17] M. G. Moharam and T. K. Gaylord, J. Opt. Soc. Am. A 3, 1780–1787 (1986).

Google Scholar

[18] M. G. Moharam, and B. Eric, Grann, and Drew A. Pommet, J. Opt. Soc. Am. A 12(5), 1068–1076 (1995).

Google Scholar

[19] J. J. Hench, and Z. Strakos, Electron. Trans. Num. Anal. 31, 331–357 (2008).

Google Scholar

[20] Z. Wu, J. W. Haus, Q. Zhan, and R. L. Nelcon, Plasmonics 3(2-3), 103–108 (2008).

Google Scholar

[21] Zheng Gai-Ge, Xian Feng-Lin and LI Xiang-Yin, Chin. Phys. Lett 28, 054213 (2011).

Google Scholar

[22] Chien-Chang Chao, Chih-Ming Wang, and Jenq-Yang Chang, Opt. Express 18, 11763–11771 (2010).

Google Scholar