[1]
S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, in: D.A. Siginer, H.P. Wang (Eds. ), Developments and Applications of Non-Newtonian Flows, ASME, 1995, pp.99-105. FED-231/MD-66.
Google Scholar
[2]
Shin, D., and Banerjee, D., Enhancement of specific heat of high-temperature silica nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications, International Journal of Heat and Mass Transfer, 2011, Volume 54, Issues 5-6, Pages 1064-1070, February (2011).
DOI: 10.1016/j.ijheatmasstransfer.2010.11.017
Google Scholar
[3]
Shin, D., and Banerjee, D., Effects of silica nanoparticles on enhancing the specific heat capacity of carbonate salt eutectic (work in progress), International Journal of Structural Change in Solids – Mechanics and Applications, Vol. 2, No. 2, pp.25-31, November, (2010).
Google Scholar
[4]
W. Yu, S.U. S Choi, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model, J. Nanopart. Res. 5(1-2)(2003) 167-171.
DOI: 10.1023/a:1024438603801
Google Scholar
[5]
D. Shin, D. Banerjee, Enhanced specific heat of nanofluid, ASME J. Heat Transfer 133(2) (2001) 024501.
Google Scholar
[6]
D. Wen, G. Lin, S. Vafaei, K. Zhang, Review of nanofluids for heat transfer applications, Particuology 7 (2009) 141-150.
DOI: 10.1016/j.partic.2009.01.007
Google Scholar
[7]
P. Keblinski, J.A. Eastman, D.G. Cahill, Nanofliuds for thermal transport, Mater. Today 8 (2005) 36-44.
Google Scholar
[8]
W. Evans, R. Prasher, J. Fish, P. Meakin, P. Keblinski, Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposite and colloidal nanofluids, Int. J. Heat Mass Transfer 51 (2008) 1431-1438.
DOI: 10.1016/j.ijheatmasstransfer.2007.10.017
Google Scholar
[9]
S.Q. Zhou, R. Ni, Measurement of the specific heat capacity of water-based nanofluid, Appl. Phys. Lett. 92(2008) 093123.
DOI: 10.1063/1.2890431
Google Scholar
[10]
B.X. Wang, L.P. Zhou, X.F. Peng, Surface and size effects on the specific heat capacity of nanoparticles, Int. J. Thermophys. 27(2006) 139-151.
DOI: 10.1007/s10765-006-0022-9
Google Scholar
[11]
Shin, D., and Banerjee, D., Enhancement of specific heat of high-temperature silica nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications, International Journal of Heat and Mass Transfer, 2011, Volume 54, Issues 5-6, Pages 1064-1070, February (2011).
DOI: 10.1016/j.ijheatmasstransfer.2010.11.017
Google Scholar
[12]
L. Xue, P. Keblinski, S.R. Phillpot, S.U. -S. Choi, J.A. Eastman, Effect of liquid layering at the liquid-solid interface on thermal transport, Int. J. Heat Mass Transfer 47 (2004) 4277-4284.
DOI: 10.1016/j.ijheatmasstransfer.2004.05.016
Google Scholar
[13]
S.H. Oh, Y. Kauffmann, C. Scheu, W.D. Kaplan, M. Ruhle, Ordered liquid aluminum at the interface with sapphire, Science 310 (2005) 661-663.
DOI: 10.1126/science.1118611
Google Scholar