Study on the Hydrophobized Changes in Wettability of Sol-Gel Synthesized Nano Titanium Dioxide Films

Article Preview

Abstract:

The hydrophobized change in wettability of TiO2 films has been investigated for glass coated with acidic TiO2 nanosols containing varying concentrations of dispersed nanocrystalline titania, obtained by sol-gel method. The photo-induced change in wettability was evaluated by measuring the time dependent drop of water contact angle (WCA) after samples had been soaked in a decanoic acid (DA). TiO2 films treated in this way exhibit superhydrophobic behaviour, with WCA greater than 1600. After radiation with UV (black light), the superhydrophobic properties are transformed into superhydrophilic properties, with WCA of almost 08. As TiO2 content and layer thickness increase, high rates of photo-induced change are found. Use of a calcination temperature for the intermediate annealing of the single layers in multilayer coatings and a short final sintering step at a relatively high temperature (e.g. 500-700 °C for 10 min) allow the preparation of relatively thin TiO2 films on glass with a high photoactivity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

362-365

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Watanabe, A. Kitamura, E. Kojima, C. Nakayama, K. Hashimoto, A. Fujishima, in: D.E. Olis, Al-Ekabi (Eds. ), Photocatalytic Purification and Treatment of Water and Air, Elsevier, 1993, p.747–756.

Google Scholar

[2] A. Mills, S. LeHunte, J. Photochem. Photobiol. A 108 (1997) 1–35.

Google Scholar

[3] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Nature 388 (1997) 431–432.

DOI: 10.1038/41233

Google Scholar

[4] M. Machida, K. Norimoto, T. Watanabe, K. Hashimoto, A. Fujishima, J Mater. Sci. 34 (1999) 2569–2574.

DOI: 10.1023/a:1004644514653

Google Scholar

[5] M.J. Alam, D.C. Cameron, J. Sol-Gel Sci. Technol. 25 (2002) 137–145.

Google Scholar

[6] N. Toshikazu, Y. Takayuki, M. Nobuyoshi, S. Makiko, Thin Solid Films 467 (2004) 43–49.

DOI: 10.1016/j.tsf.2004.02.097

Google Scholar

[7] R. Mechiakh, R. Bensaha, C. R. Phys. 7 (2006) 464–470.

Google Scholar

[8] A. Verma, A. Basu, A.K. Bakhshi, S.A. Agnihotry, Solid State Ionics 176 (2005) 2285–2295.

DOI: 10.1016/j.ssi.2005.06.011

Google Scholar

[9] A. Matsuda, Y. Kotani, T. Kogure, M. Tatsumisago, T. Minami, J. Am. Ceram. Soc. 83 (2000) 229–231.

Google Scholar

[10] P.D. Cozzoli, A. Kornowski, H. Weller, J. Am. Chem. Soc. 125 (2003) 14539–14548.

Google Scholar

[11] I. Gnanasekar, V. Subramanian, J. Robinson, J.C. Jiang, F.E. Posey, B. Rambabu, J. Mater. Res. 17 (2002) 1507–1512.

DOI: 10.1557/jmr.2002.0224

Google Scholar

[12] G. Goutailler, C. Guillard, S. Daniele, L.G. Hubertpfalzgraf, J. Mater. Chem. 13 (2003) 342–346.

Google Scholar

[13] K.Y. Chiu, M.H. Wong, F.T. Chen, H.C. Man, Appl. Surf. Sci. 253 (2007) 6762–6768.

Google Scholar

[14] S. Watson, D. Beydoun, J. Scott, R. Amal, J. Nanopart. Res. 6 (2004) 193–207.

Google Scholar

[15] S. Han, S. -H. Choi, S. -S. Kim, M. Cho, B. Jang, D. -Y. Kim, J. Yoon, T. Hyeon, Small 1 (8–9) (2005) 812–816.

Google Scholar

[16] W.A. Daoud, J.H. Xin, J. Sol-Gel Sci. Technol. 29 (2004) 25–29.

Google Scholar

[17] M.J. Jensen, P.A. Fuierer, J. Sol-Gel Sci. Technol. 39 (2006) 229–233.

Google Scholar

[18] M. Langlet, A. Kim, M. Audier, J.M. Herrmann, J. Sol-Gel Sci. Technol. 25 (2002) 223–234.

DOI: 10.1023/a:1020259911650

Google Scholar

[19] I. Kartini, P. Meredith, J.C. Diniz da Costa, G.Q. Lu, J. Sol-Gel Sci. Technol. 31 (2004) 185–189.

Google Scholar

[20] Hosseini Zori M. Synthesis of TiO2 nanoparticles by microemulsion/heat treated method and photodegradation of methylene blue. J Inorg Organomet Polym 2011; 21: 81–90.

DOI: 10.1007/s10904-010-9419-9

Google Scholar

[21] A. Zaban, S. Ferrere, J. Sprague, B.A. Gregg, J. Phys. Chem. B 101 (1997) 55–57.

Google Scholar

[22] F. Pichot, J.R. Pitts, B.A. Gregg, Langmuir 16 (2000) 5626–5630.

Google Scholar

[23] S. -H. Lee, M. Kang, S.M. Cho, G.J. Han, B. -W. Kim, K.J. Yoon, C. -H. Chung, J. Photochem. Photobiol. A 146 (2001) 121–128.

Google Scholar

[24] M. Langlet, A. Kim, M. Audier, C. Guillard, J.M. Herrmann, J. Mater. Sci. 38 (2003) 3945–3953.

DOI: 10.1023/a:1026150213468

Google Scholar

[25] G. Balasubramanian, D.D. Dionysiou, M.T. Suidan, I. Baudin, J.M. Laine, Appl. Catal. B 47 (2004) 73–84.

Google Scholar

[26] K. Yu, J. Zhao, Y. Guo, X. Ding, H. Bala, Y. Liu, Z. Wang, Mater. Lett. 59 (2005) 2515–2518.

Google Scholar

[27] N. -G. Park, K.M. Kim, M.G. Kang, K.S. Ryu, S.H. Chang, Y. -J. Shin, Adv. Mater. 17 (2005) 2349–2353.

Google Scholar

[28] D.C. Pan, N. Zhao, Q. Wang, S. Jiang, X. Ji, L. An, Adv. Mater. 17 (2005) 1991–(1995).

Google Scholar

[29] W.A. Daoud, J.H. Xin, G.K.H. Pang, J. Am. Ceram. Soc. 88 (2005) 443–446.

Google Scholar

[30] S. Permpoon, M. Fallet, G. Berthome, B. Baroux, J.C. Joud, M. Langlet, J. Sol-Gel Sci. Technol. 35 (2005) 127–136.

DOI: 10.1007/s10971-005-1385-2

Google Scholar

[31] R.K. Wahi, Y. Liu, J.C. Falkner, V.L. Colvin, J. Colloid Interf. Sci. 302 (2006) 530–536.

Google Scholar