[1]
V. Srinivasan, J.W. Weidner, Capacitance studies of cobalt oxide films formed via electrochemical precipitation, J Power Sources, 108 (2002) 15–20.
DOI: 10.1016/s0378-7753(01)01012-6
Google Scholar
[2]
A.S. Aricò; P. Bruce; B. Scrosat; J. Tarascon; W. van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices, Nature Materials, 4(2005) 366-367.
DOI: 10.1038/nmat1368
Google Scholar
[3]
C. Hui, C. Xuan, J. Dianzeng and Z. Wanyong, Electrochemical Deposition of Ni(OH)2/CNTs Electrode as Electrochemical Capacitors, Rare Matelas, 30(2011) 85-90.
DOI: 10.1007/s12598-011-0244-2
Google Scholar
[4]
B. E. Conway, Electrochemical Supercapacitors: Scientific Fundamental and Technological Applications, , Plenum Publishers, (1999).
Google Scholar
[5]
Chongfu Zhou, Carbon Nanotube Based Electrochemical Supercapacitors, Master Thesis, Georgia Institute of Technology, (2006).
Google Scholar
[6]
R. Kotz, M. Carlen, Principles and applications of electrochemical capacitors, Electrochimica Acta, 45(2000)2483-2498.
DOI: 10.1016/s0013-4686(00)00354-6
Google Scholar
[7]
D. K. Ariyanayagam, Advanced electrode material for electrochemical supercapacitor, Master Thesis, McMaster university, (2012).
Google Scholar
[8]
B. E. Conway, W. G. Pell, Double-layer and Psuedocapacitance Types of Electrochemical Capacitors and Their Applications to the Development of Hybrid Devices, J Solid State Electrochem, 7(2003)637-644.
DOI: 10.1007/s10008-003-0395-7
Google Scholar
[9]
E. Frackowiak, Nanotubular Materials as Electrodes for Supercapacitors, Fuel Process Technol, 77(2002) 213-219.
Google Scholar
[10]
E. Frackowiak, Enhanced Capacitance of Carbon Nanotubes through Chemical Activation, Chem Phys Lett, 361(2002) 35-41.
Google Scholar
[11]
P. Simon, Y. Gogosti, Materials for Electrochemical Capacitors, Nature Materials, 7(2008) 845-854.
Google Scholar
[12]
L. Saghatforoush, R. Mehdizadeh, Hydrothermal and Sonochemical Synthesis of Nano-sized Nickel(II) Schiff base Complex as a Precursor for Nano-sized Nickel(II) oxide; Spectroscopic, Catalytic and Antibacterial Properties, J Transition Metal Chem, 35(2010).
DOI: 10.1007/s11243-010-9410-x
Google Scholar
[13]
K. Nam, K. Kim, E. Lee and W. Yoon, Pseudocapacitive properties of electrochemically prepared nickel oxides on 3-dimensional carbon nanotube film substrates, J Power Sources, 182(2008) 642-652.
DOI: 10.1016/j.jpowsour.2008.03.090
Google Scholar
[14]
Y. Jiang, P. Wang, J. Zhang, W. Li and L. Lin, 3D Supercapacitor Using Nickel Electroplated Vertical Aligned Carbon Nanotube Array Electrode, Micro Electro Mechanical Systems (MEMS), IEEE 23rd, Hong Kong, 23(2010)1171-1174.
DOI: 10.1109/memsys.2010.5442420
Google Scholar
[15]
J. Cheng, G. Cao, Y. Yang, Characterization of sol–gel-derived NiOx xerogels as supercapacitors, J Power Source, 159(2006)734–731.
DOI: 10.1016/j.jpowsour.2005.07.095
Google Scholar
[16]
B. Gao, C. Yuan, L. Su, Nickel oxide coated on ultrasonically pretreated carbon nanotubes for supercapacitor, J Solid State Electrochem, 13(2009)1251–1257.
DOI: 10.1007/s10008-008-0658-4
Google Scholar
[17]
C. Liua, b, Y. S. Leea, Y. Kima, I. Songa, J. Kima, Electrochemical Characteristics of Hydrothermally Deposited Nickel Hydroxide on Multi-walled Carbon Nanotube for Supercapacitor Electrode, Synthetic Met, 159(2009) 2009–(2012).
DOI: 10.1016/j.synthmet.2009.07.010
Google Scholar