Synthesis and Antifungal Property of Mg Doped Zinc Oxide Nanocubes on the Glass Substrate Using Solution-Evaporation Method at Low Temperature

Article Preview

Abstract:

This in this paper, we report the synthesis of Mg doped ZnO nanocubes on the glass substrate by using solution-evaporation method at low temperature for the first time. Samples are characterized by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD). The samples have a pure phase and no characteristic peaks are observed for the other impurities, such as Mg and MgO. It was observed that the length and width of the ZnO nanocubes are about 100nm and morphology of the samples is cube-shape. A blue-shift is observed in the band-edge with introduction of Mg into zinc oxide structure. The anti-fungal results indicate that ZnO nanocubes arrays exhibit stable properties after two months and play an important role in growth inhibitory of Candida albicans.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

889-893

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Yu, F. Qu, X. Wu, Facile hydrothermal synthesis of novel ZnO nanocubes, J. Alloys Compd. 504 ( 2010) L1-L4.

DOI: 10.1016/j.jallcom.2010.05.055

Google Scholar

[2] J. Li, Zhuang H. Zhuang, J. Wang, P. Xu, Fabrication and characterization of Mg-doped pencil-shaped ZnO microprisms, Appl. Surf. Sci. 257 ( 2011) 2337–2340.

DOI: 10.1016/j.apsusc.2010.09.099

Google Scholar

[3] H.L. Yan, X.L. Zhong, J.B. Wang, S.L. Ding, G.C. Zhou, Y.C. Zhou, Spatial distribution of manganese and room temperature ferromagnetisin manganese-doped ZnO nanorods, Appl. Phys. Lett. 90 ( 2007) 082503-082506. ‏.

DOI: 10.1063/1.2993354

Google Scholar

[4] J. Zhong, S. Muthukumar, Y. Chen, and Y. Lu, Ga-doped ZnO single-crystal nanotips grown on fused silica by metalorganic chemical vapor deposition, Appl. Phys. Lett. 83(2003)3401-3403.

DOI: 10.1063/1.1621729

Google Scholar

[5] S. Yun, J. Lee, J. Yang, and S. Lim., Hydrothermal synthesis of Al-doped ZnO nanorod arrays on Si substrate, Phy.B. 405(2010) 413–419.

DOI: 10.1016/j.physb.2009.08.297

Google Scholar

[6] A. Ismardi, C. F Dee, I.C. Gebeshuber and B.Y. Majlis, Growth and Characterization of Indium Doped ZnO Nan owires Using Vapor Transport Deposition Method, Adv. Mater. Res. 364 (2012) 202-205.

DOI: 10.4028/www.scientific.net/amr.364.202

Google Scholar

[7] S. Deka, and P.A. Joy, Synthesis and magnetic properties of Mn doped ZnO nanowires, Solid State Commun. 142 (2007) 190–194.

DOI: 10.1016/j.ssc.2007.02.017

Google Scholar

[8] H. Li, Y.Z. Zhang, X.J. Pan, H.L. Zhang, T. Wang, E.Q. Xie, Effects of In and Mg doping on properties of ZnO nanoparticles by flame spray synthesis, J. Nanopart. Res. 11(2009) 917-921.

DOI: 10.1007/s11051-008-9487-8

Google Scholar

[9] E. W. Seelig, B. Tang, A. Yamilov, H. Cao and R. P. H, Chang, Self-assembled 3D photonic crystals from ZnO colloidal spheres, Mate. Chem. and Phys. 80( 2003) 257-263.

DOI: 10.1016/s0254-0584(02)00492-3

Google Scholar

[10] Z. Wei Pan1, Z. R Dai1, and Z. L Wang, Room-Temperature Ultraviolet Nanowire Nanolasers, Science. 291(2001) 1947-(1949).

Google Scholar

[11] P.G. Li, S.L. Wang, W.H. Tang, Low-temperature synthesis and photoluminescence of ZnO nanostructures by a facile hydrothermal process, J. Alloys Compd. 489( 2010) 566-569.

DOI: 10.1016/j.jallcom.2009.09.110

Google Scholar

[12] Q. Ahsanulhaq, S.H. Kim, Y.B. Hahn, Hexagonally patterned selective growth of well-aligned ZnO nanorod arrays, J. Alloys Compd. 484( 2009) 484: 17-20.

DOI: 10.1016/j.jallcom.2009.04.122

Google Scholar

[13] D. Yu et al, ZnO Nanowires Synthesized by Vapor Phase Transport Deposition on Transparent Oxide Substrates, Nanoscale Res Lett. 5(2010) 1333-1339.

DOI: 10.1007/s11671-010-9649-3

Google Scholar

[14] X.Y. Kong, Y. Ding, R.S. Yang, Z.L. Wang, Single-crystal nanorings formed by epitaxial self-coiling of polar-nanobelt, Science. 303(2004) 1348-1351.

DOI: 10.1126/science.1092356

Google Scholar

[15] X. Wu, F.Y. Qu, X. Zhang, W. Cai, G.Z. Shen, Fabrication of ZnO ring-like nanostructures at a moderate temperature via a thermal evaporation process, J. Alloys Compd. 486( 2009) L13- L16.

DOI: 10.1016/j.jallcom.2009.06.197

Google Scholar

[16] H.B. Zeng, W.P. Cai, P.S. Liu, X.X. Xu, H.J. Zhou, C. Klingshirn, H. Kalt, ZnO-Based Hollow Nanoparticles by Selective Etching: Elimination and Reconstruction of Metal−Semiconductor Interface, Improvement of Blue Emission and Photocatalysis, ACS Nano. 2 (2008).

DOI: 10.1021/nn800353q

Google Scholar

[17] Xiang Yang Kong and Zhong Lin Wang, Spontaneous Polarization-Induced Nanohelixes, Nanosprings, and Nanorings of Piezoelectric Nanobelts, Nano Lett. 3(2003) 1625-1631.

DOI: 10.1021/nl034463p

Google Scholar

[18] H.B. Chen, X. Wu, L.H. Gong, C. Ye, F.Y. Qu, G.Z. Shen, Hydrothermally Grown ZnO Micro/Nanotube Arrays and Their Properties, Nanoscale Res. Lett. 5 (2010) 570-575.

DOI: 10.1007/s11671-009-9506-4

Google Scholar

[19] L.H. Gong, X. Wu, C. Ye, F.Y. Qu, M.Z. An, Aqueous phase approach to ZnO microspindles at low temperature, J. Alloys Compd. 501( 2010) 375-379.

DOI: 10.1016/j.jallcom.2010.04.110

Google Scholar

[20] Zongyou Yin et al, Electrochemical Deposition of ZnO Nanorods on Transparent Reduced Graphene Oxide Electrodes for Hybrid Solar Cells, small. 6(2010) 307–312.

DOI: 10.1002/smll.200901968

Google Scholar

[21] O. Akhavan, M. Mehrabian2, K. Mirabbaszadeh2 and R. Azimirad, Hydrothermal synthesis of ZnO nanorod arrays for photocatalytic inactivation of bacteria, J. Phys. D: Appl. Phys. 42(2009) 225305.

DOI: 10.1088/0022-3727/42/22/225305

Google Scholar

[22] W.T. Chiou, W.Y. Wu, J.M. Ting, Growth of single crystal ZnO nanowires using sputter deposition, Diamond Relat. Mater. 12(2003) 1841–1844.

DOI: 10.1016/s0925-9635(03)00274-7

Google Scholar

[23] K. Kitamura, T. Yatsui, M. Ohtsuand G-C. Yi, Fabrication of vertically aligned ultrafine ZnO nanorods using metal–organic vapor phase epitaxy with a two-temperature growth method, Nanotechnology. 19(2008) 175305.

DOI: 10.1088/0957-4484/19/17/175305

Google Scholar

[24] DW. Williams and MA. Lewis, Isolation and identification of Candida from the oral cavity, Oral Dis. 6 ( 2000) 3-11.

Google Scholar

[25] S. Suwanboon, P. Amornpitoksuk and Apinya Sukolrat, ependence of optical properties on doping metal, crystallite size and defect concentration of M-doped ZnO nanopowders (M = Al, Mg, Ti), Ceram Int. 37 (2011) 1359 1365.

DOI: 10.1016/j.ceramint.2010.12.010

Google Scholar

[26] B. Djurisˇic´ A, and YH. Leung, Optical Properties of ZnO Nanostructures, small. 8-9( 2006) 944-961.

Google Scholar