Machinability of Bulk Metallic Glass Materials on Milling and Drilling

Article Preview

Abstract:

In this study, machinability of Zr-based bulk metallic glass (Zr52.5Ti5Cu17.9Ni14.6Al10) (BMG) material was investigated by conducting a set of milling and drilling experiments. In milling, two different tool paths, spiral and slot milling, were used. To investigate the behavior of BMG in drilling by two different tools at different feed rates, two sets of drilling experiments are conducted. Crown shaped exit burr formation are observed in drilling of BMG. Best results on thrust force, exit burr formation and hole surface roughness is obtained while using micrograin WC tool on BMG drilling. No chip light emission was observed during all tests. This study concludes that BMG can be achieved machining with good surface roughness, (Ra=0.113 µm), using conventional cutting tools.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 83-86)

Pages:

335-341

Citation:

Online since:

December 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Peker and W. L. Johnson: Appl. Phys. Lett. 63 (1993) p.2342.

Google Scholar

[2] C.T. Liu, L. Heatherly, D.S. Easton, C.A. Carmichael, J.H. Schneibel, C.H. Chen, J.L. Wright, M.H. Yoo, J.A. Horton, A. Inoue: Metallurgical And Materials Transactions A 29 (1998) p.1811.

DOI: 10.1007/s11661-998-0004-6

Google Scholar

[3] H.J. Leamy, H.S. Chen, T.T. Wang: Metallurgical Transactions 3 (1972) p.699.

Google Scholar

[4] C.A. Pampillo, A.C. Reimschuessel: Journal of Materials Science 9 (1974) p.718.

Google Scholar

[5] C.J. Gilbert, R.O. Ritchie, W.L. Johnson: Applied Physics Letter 71 (1997) p.476.

Google Scholar

[6] . Spaepen: Acta. Metallurgica 23 (1975) p.615.

Google Scholar

[7] M. Bakkal, C.T. Liu, T.R. Watkins, R.O. Scattergood, A.J. Shih: Intermetallics 12 (2004) p.195.

Google Scholar

[8] M. Bakkal, A.J. Shih, R.O. Scattergood, C.T. Liu: Scripta Materialia 50 (2004) p.583.

Google Scholar

[9] M. Bakkal, A.J. Shih, R.O. Scattergood: International Journal of Machine Tool and Manufacture 44 (2004) p.915.

Google Scholar

[10] M. Bakkal, A.J. Shih, S.B. McSpadden, R.O. Scattergood: International Journal of Machine Tools and Manufacture 45 (2005) p.863.

DOI: 10.1016/j.ijmachtools.2004.11.005

Google Scholar

[11] K. Fujita, Y. Morishita, N. Nishiyama, H. Kimura, A. Inoue: Materials Transactions, 46 (2005) p.2856.

Google Scholar

[12] X.C. Zhang, Y. Zhang, G.L. Chen: Journal of Non-Crystalline Solids, 354 (2008) p.3308.

Google Scholar

[13] G. Boothroyd, W.A. Knight, Fundamentals of Machining and Machine Tools, (Marcel Dekker, New York 1989).

Google Scholar

[14] N. Lopezdelacalle ,J. Perez, J.I. Llorente, .A. Sanchez: Journal of Materials Processing Technology 100 (2000) p.1.

Google Scholar

[15] I.S. Kang, J.S. Kim, J.H. Kim, M.C. Kang, Y.W. Seo: Journal of Materials Processing Technology187-188 (2007) p.250.

Google Scholar

[16] Altintas, Y. Manufacturing Automation, ( Cambridge University Press new York 2000).

Google Scholar

[17] E. Budak, E.J.A. Armarego, Y. Altintas: Journal of Manufacturing Science and Engineering, 118 (1996) p.514.

Google Scholar

[18] M. Wan, W.H. Zhang, G. Tan, G.H. Qin: Journal of Engineering Manufacture, 221 (2007) p.1007.

Google Scholar

[19] K. Weinert, V. Petzoldt: Materials Science and Engineering, 481 (2008) p.672.

Google Scholar

[20] S. Kalpakjian, S.R. Schmid, Manufacturing Process for Engineering Materials, (Prentice Hall, New Jersey 2003).

Google Scholar

[21] O. Oliveria, G. Barrow: Int. J. of Machine Tool and Manufacturing 36 (1996) p.1005.

Google Scholar