The Influence of Welding Parameters on Tensile Behavior of Friction Stir Welded Al 2024-T4 Joints

Article Preview

Abstract:

In the present study, the relationships between friction stir welding parameters and the tensile behavior of Al 2024-T4 joints was investigated. The aluminum alloy plates were butt-welded using a hardened steel tool with a threaded and fluted cylindrical pin at various tool rotation speed to advancing speed ratios. Metallographic observations, EDS analysis and microhardness measurements show that the band spacing in the periodic microstructure of the stir zone and the average microhardness of this region decrease with increasing speed ratio. Tensile ductility is strongly affected by welding parameters and final elongation increases significantly with speed ratio at the constant rotating speed of 900 rpm. This behavior is found to be associated with a change in tensile fracture location. Formation of microscopic voids at low speed ratios leads to premature fracture in the nugget zone, while in the defect-free joints produced at higher speed ratios the fracture location shifts into the HAZ on the retreating side, which exhibits the lowest microhardness value within the weld joint. At the optimum rotation speed of 900 rpm and speed ratio of 11.2 rev/mm the tensile strength and final elongation of the joints are equivalent to 97% and 77% that of base metal, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 83-86)

Pages:

439-448

Citation:

Online since:

December 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.S. Mishra, Friction stir welding and processing, Mater. Sci. and Eng. R Vol. 50 (2005) 1-78.

Google Scholar

[2] M.A. Sutton, B. Yang, A.P. Reynolds, R. Taylor, Microstructural studies of friction stir welds in 2024-T3 aluminum, Mater. Sci. and Eng. A Vol. 323 (2002) 160-166.

DOI: 10.1016/s0921-5093(01)01358-2

Google Scholar

[3] A.P. Reynolds, B. Yang, J. Yan, M.A. Sutton, Banded microstructure in AA2024-T351 and AA2524-T351 aluminium friction stir welds Part1. Metallurgical studies, Mater. Sci. and Eng. A Vol. 364 (2004) 55-65.

DOI: 10.1016/s0921-5093(03)00532-x

Google Scholar

[4] Y. S. Sato, M. Urata, H. Kokawa, Parameters controlling microstructure and hardness during friction-stir welding of precipitation-hardenable aluminum alloy 6063, Metallurg. and Mater. Trans. A Vol. 33A (2002) 625-635.

DOI: 10.1007/s11661-002-0124-3

Google Scholar

[5] M.A. Sutton, B. Yang, A.P. Reynolds, J. Yan, Banded microstructure in AA2024-T351 and AA2524-T351 aluminium friction stir welds Part2. Mechanical Characterization, Mater. Sci. and Eng. A Vol. 364 (2004) 66-74.

DOI: 10.1016/s0921-5093(03)00532-x

Google Scholar

[6] D. P. P. Booth, M. J. Starink, I. Sinclair, Analysis of local microstructure and hardness of 13 mm gauge 2024-T351 AA friction stir welds, Mater. Sci. and Tech. Vol. 23 (2007) 276-284.

DOI: 10.1179/174328407x157290

Google Scholar

[7] C. Genevois, A. Deschamps, A. Denquin, B. Doisneau-cottignies, Quantitative investigation of precipitation and mechanical behavior for AA2024 friction stir welds, Acta Materialia Vol. 53 (2005) 2447-2458.

DOI: 10.1016/j.actamat.2005.02.007

Google Scholar

[8] A. Deschamps, W. J. Poole, On the coupling between precipitation and plastic deformation in relation with friction stir welding of AA2024 T3 aluminium alloy, Materials Science and Engineering A Vol. 441 (2006) 39-48.

DOI: 10.1016/j.msea.2006.07.151

Google Scholar

[9] M.J. Jones , P. Heurtier, C. Desrayaud, F. Montheillet, D. Allehaux, J.H. Driver, Correlation between microstructure and microhardness in a friction stir welded 2024 aluminium alloy, Scripta Materialia Vol. 52 (2005) 693-697.

DOI: 10.1016/j.scriptamat.2004.12.027

Google Scholar

[10] A. P. Reynolds, B. Yang, R. Taylor, Mixed mode I/II fracture of 2024-T3 friction stir welds, Eng. Fract. Mech. Vol. 70 (2003) 2215-2234.

DOI: 10.1016/s0013-7944(02)00236-9

Google Scholar

[11] S.R. Ren, Z.Y. Ma, L.Q. Chen, Effect of welding parameters on tensile properties and fracture behavior of friction stir welded Al-Mg-Si alloy, Scripta Materialia Vol. 56 (2007) 69-72.

DOI: 10.1016/j.scriptamat.2006.08.054

Google Scholar

[12] S. Lim, S. Kim, C. Lee, S. Kim, Tensile behavior of friction-stir-welded A356-T6/Al 6061T651 bi-alloy plate, Metallurg. and Mater. Trans. A Vol. 35A (2004) 2837-2843.

DOI: 10.1007/s11661-004-0231-4

Google Scholar

[13] H.J. Liu, H. Fujii, M. Maeda, K. Nogi , Tensile properties and fracture locations of friction-stirwelded joints of 2017-T351 aluminum alloy, Mater. Proces. Tech. Vol. 142 (2003) 692-696.

DOI: 10.1016/s0924-0136(03)00806-9

Google Scholar

[14] S. Lim, S. Kim, C. Lee, S. Kim, Tensile behavior of friction-stir-welded Al 6061-T651, Metallurg. and Mater. Trans. A Vol. 35A (2004) 2829-2835.

DOI: 10.1007/s11661-004-0230-5

Google Scholar