[1]
H. van Kann, Titanium and Titanium Alloys, vol. 1, Plenum Press, NY, USA, (1982).
Google Scholar
[2]
R.A. Wood, R.J. Favor, Titanium Alloys Handbook, vol. 1, Wright-Patterson Air Force Base, OH, USA, (1972).
Google Scholar
[3]
J. B Borradile, R.H. Jeal, Titanium and Titanium Alloys 1-3, (1982).
Google Scholar
[4]
C.H. Che-Haron, A. Jawaid, The effect of machining on surface integrity of titanium alloy Ti6% Al-4% V, J. Mater. Process. Technol. Vol. 166 (2005), 188-192.
DOI: 10.1016/j.jmatprotec.2004.08.012
Google Scholar
[5]
M. Calamaz, D. Coupard, F. Girot, A new material model for 2D numerical simulation of serrated chip formation when machining titanium alloy Ti-6Al-4V, Int. J. Mach. Tools Manuf. Vol. 48 (2008), 275-278.
DOI: 10.1016/j.ijmachtools.2007.10.014
Google Scholar
[6]
E.M. Trent, P.K. Wrigth, Metal Cutting, 4th ed., Butterworth-Heinemann, (2000), 434.
Google Scholar
[7]
M.C. Shaw, Metal Cutting Principles, 2nd ed., Oxford Science Publications, Oxford, (2005), 651.
Google Scholar
[8]
T.H.C. Childs, K. Maekawa, T. Obinakawa, Y. Yamane, Metal Machining-Theory and Applications, Elsevier, Amsterdam, (2000).
Google Scholar
[9]
T. Özel, E. Zeren, Determination of work material flow stress and friction for FEA of machining using orthogonal cutting tests, J. Mater. Process. Technol. Vol. 153-154 (2004), 1019-1025.
DOI: 10.1016/j.jmatprotec.2004.04.162
Google Scholar
[10]
W. Lee, C. Lin, High-temperature behaviour of Ti6Al4V alloy evaluated by high strain-rate compression tests, J. Mater. Process. Technol. Vol. 75 (1998), 127-136.
DOI: 10.1016/s0924-0136(97)00302-6
Google Scholar
[11]
M.E. Merchant, Mechanics of the metal cutting, J. Appl. Phys. Vol. 16 (1945), 267-275.
Google Scholar
[12]
S. Kobayashi, E.G. Thomsen, Metal cutting analysis. I. Re-evaluation and new method of presentation of theories, ASME J. Eng. Ind. Vol. 90 (1962), 63-70.
DOI: 10.1115/1.3667440
Google Scholar
[13]
E. Usui, Progress of predictive theories in metal cutting, JSME Int. J. Ser. III Vol. 31(2) (1988), 363-369.
Google Scholar
[14]
N. N. Zorev, Metal Cutting Mechanics, Pergamon Press, Oxford, (1966).
Google Scholar
[15]
B.F. von Turkovich, Shear stress in metal cutting, ASME J. Eng. Ind. Vol. 92 (1970), 151-157.
Google Scholar
[16]
C. Spaans, Treatise of the streamlines and the stress, strain and strain-rate distributions, and on stability in the primary shear zone in metal cutting, ASME J. Eng. Ind. Vol. 97 (1972), 690-696.
DOI: 10.1115/1.3428230
Google Scholar
[17]
P.L.B. Oxley, The Mechanics of Machining, Ellis Horwood, Chichester, UK, (1989).
Google Scholar
[18]
R. Stevenson, D.A. Stephenson, The mechanical behaviour of zinc during machining, ASME J. Eng. Ind. Vol. 117 (1995), 173-178.
Google Scholar
[19]
R. Stevenson, Study on the correlation of workpiece mechanical properties from compression and cutting tests, J. Mach. Sci. Technol. Vol. 1(1) (1997), 67-79.
Google Scholar
[20]
M. Shatla, C. Kerk, T. Altan, Process modelling in machining. Part I: Determination of flow stress data, Int. J. Mach. Tools Manuf. Vol. 41 (2001), 1511-1534.
DOI: 10.1016/s0890-6955(01)00016-5
Google Scholar
[21]
G.R. Johnson, J.M. Hoegfeldt, U.S. Lindholm, A. Nagy, Response of various metals to large torsional strains over a large strain-rates. Part I: Ductile metals, J. Eng. Mater. Technol. Vol. 105 (1983), 42-47.
DOI: 10.1115/1.3225617
Google Scholar
[22]
J.R. Johnson, W.H. Cook, A constitutive model and data for metals subjected to large strains, high strain-rates and high temperatures, in: Proceeding of the 7th International Symposium on Ballistics, The Hague, The Netherlands, (1983), 541-547.
Google Scholar
[23]
B. Hopkinson, The effects of momentary stresses in metals, Proceedings of Royal Society of London, Vol.A. 74 (1905), 498-506.
DOI: 10.1098/rspl.1904.0145
Google Scholar
[24]
H. Kolsky, An investigation of the mechanical properties of materials at very high rates of loading, Proceedings of Physical Society, Vol. 62 (1949), 676-700.
DOI: 10.1088/0370-1301/62/11/302
Google Scholar
[25]
T. Shirakashi, K. Maekawa, E. Usui, Flow stress of low carbon steel at high temperature and strain-rate. Part I: Propriety of incremental strain method in impact compression test with rapid heating and cooling systems, Bulletin of the Japan Society of Precision Engineering, Vol. 17(3) (1983).
Google Scholar
[26]
Y.B. Guo, An integral method to determine the mechanical behaviour of materials in metal cutting, J. Mater. Process. Technol. Vol. 142 (2003), 72-81.
Google Scholar
[27]
P. Mathew, N.S. Arya, Material properties from machining, the 1st conference on Dynamic Loading in Manufacturing and Service, Melbourne, Australia, (1993), 33-39.
Google Scholar
[28]
S. Lei, Y.C. Shin, F.P. Incropera, Material constitutive modelling under high strain-rates and temperature through orthogonal machining tests, J. Manuf. Sci. Eng. Vol. 121 (1999), 577-585.
DOI: 10.1115/1.2833062
Google Scholar
[29]
J. Kopac, M. Korosec, K. Kuzman, Determination of flow stress properties of machinable materials with help of simple compression and orthogonal machining test, Int. J. Mach. Tools Manuf. Vol. 41 (2001), 1275-1282.
DOI: 10.1016/s0890-6955(01)00021-9
Google Scholar
[30]
S. Kumar, P. Fallböhmer, T. Altan, Computer simulation of orthogonal metal cutting process: Determination of material properties and effects of tool geometry on chip flow, Proceedings of NAMRC 1997, Lincoln, NE, (1997).
Google Scholar
[31]
T. Özel, T. Altan, Determination of workpiece flow stress and friction at the chip-tool contact for high-speed cutting, Int. J. Mach. Tools Manuf. Vol. 40 (2000), 133-152.
DOI: 10.1016/s0890-6955(99)00051-6
Google Scholar
[32]
L.W. Meyer, Strength and ductility of a titanium-alloy Ti6Al4V in tensile and compressive loading under low, medium and high rates of strain, Proceeding of the 5th International Conference on Titanium, Munich, Germany, (1984), 1850-1851.
Google Scholar
[33]
Y.B. Guo, C.R. Liu, Mechanical properties of hardened AISI 52100 steel in hard machining processes, J. Manuf. Sci. Eng. Vol. 124 (1999), 1-9.
DOI: 10.1115/1.1413775
Google Scholar
[34]
T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, Y.V.R.K. Prasad, Hot working of commercial Ti-6Al-4V with an equiaxed α-β microstructure: materials modelling considerations, Mater. Sci. Eng., A Vol. 284 (2000), 184-194.
DOI: 10.1016/s0921-5093(00)00741-3
Google Scholar
[35]
W.S. Lee, C.F. Lin, High-temperature deformation behaviour of Ti6Al4V alloy evaluated by high strain-rate compression tests, J. Mater. Process. Technol. Vol. 75 (1998), 127-136.
DOI: 10.1016/s0924-0136(97)00302-6
Google Scholar
[36]
W.S. Lee, C.F. Lin, Plastic deformation and fracture behaviour of Ti-6Al-4V alloy, Mater. Sci. Eng., A Vol. 241 (1998), 48-59.
Google Scholar
[37]
R. Shivpuri, J. Hua, Microstructure-mechanics interactions in modelling chip segmentation during titanium machining, CIRP Annals 51, (2001), 85-89.
DOI: 10.1016/s0007-8506(07)61468-1
Google Scholar
[38]
D. Umbrello, Finite element simulation of conventional and high speed machining of Ti6Al4V alloy, J. Mater. Process. Technol. Vol. 96 (2008), 79-87.
DOI: 10.1016/j.jmatprotec.2007.05.007
Google Scholar
[39]
S. Kalpakjian, Manufacturing Processes for Engineering Materials, 3rd ed., AddisonWesley/Longman, Menlo Park, (1997).
Google Scholar