Effect of Anodizing Voltage on the Morphology and Growth Kinetics of Porous Anodic Alumina on Al-0.5 wt% Mn Alloys

Article Preview

Abstract:

In this study, the effect of anodizing voltage on the morphology of porous anodic alumina and growth kinetics of anodizing of aluminium manganese alloy was reported. It was found that the increasing anodizing voltage affect the morphology and dimensional parameters of porous AAO. Both pore diameter and interpore distance increased as a function of anodizing voltage. The regularity of porous AAO was affected by anodizing voltage. Dielectric breakdown occurred at anodizing voltage of 70 V and led to protrusions and cracks of the porous anodic alumina. Moderate anodizing voltage promoted the formation of well ordered pore arrangement while disordered pore arrangement was observed when the anodizing voltage was too low or too high. The thickness of porous AAO increased as the anodizing voltage increased.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

101-106

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Keller, M.S. Hunter, D.L. Robinson, Structural features of oxide coatings on aluminum, J. Electrochem. Soc. 100 (1953) 411-419.

DOI: 10.1149/1.2781142

Google Scholar

[2] Y.C. Sui, J.A. Gonzalez-Leon, A. Bermudez, J.M. Saniger, Synthesis of multi branched carbon nanotubes in porous anodic aluminum oxide template, Carbon 39 (2001) 1709-1715.

DOI: 10.1016/s0008-6223(00)00297-9

Google Scholar

[3] S.H. Jeong, H.Y. Hwang, S.K. Hwang, K.H. Lee, Carbon nanotubes based on anodic aluminum oxide nano-template, Carbon 42 (2004) 2073-2080.

DOI: 10.1016/j.carbon.2004.04.015

Google Scholar

[4] Z. Chen, Y. Lei, H.G. Chew, L.W. Teo, W.K. Choi, W.K. Chim, Synthesis of germanium nanodots on silicon using an anodic alumina membrane mask, J. Cryst. Growth 268 (2004) 560-563.

DOI: 10.1016/j.jcrysgro.2004.04.091

Google Scholar

[5] L. Li, S. Pan, X. Dou, Y. Zhu, X. Huang, Y. Yang, G. Li, L. Zhang, Direct electrodeposition of ZnO nanotube arrays in anodic alumina membranes, J. Phys. Chem. C 111 (2007) 7288-7291.

DOI: 10.1021/jp0711242

Google Scholar

[6] C.C. Lin, C.L. Yang, Carbon nanotubes grown on nanoporous alumina templates/aluminum foil for electrodes of aluminum electrolytic capacitors, J. Electrochem. Soc. 157 (2009) A237-A241.

DOI: 10.1149/1.3272640

Google Scholar

[7] A. Belwalkar, E. Grasing, W. Van Geertruyden, Z. Huang, W.Z. Misiolek, Effect of processing parameters on pore structure and thickness of anodic aluminum oxide (AAO) tubular membranes, J. Membr. Sci. 319 (2008) 192-198.

DOI: 10.1016/j.memsci.2008.03.044

Google Scholar

[8] S. Ono, N. Masuko, Evaluation of pore diameter of anodic porous films formed on aluminum, Surf. Coat. Technol. 169-170 (2003) 139-142.

DOI: 10.1016/s0257-8972(03)00197-x

Google Scholar

[9] X. Qu, J. Dai, J. Tian, X. Huang, Z. Liu, Z. Shen, P. Wang, Synthesis of Nd2O3 nanowires through sol-gel process assisted with porous anodic aluminum oxide (AAO) template, J. Alloys Compd. 469 (2009) 332-335.

DOI: 10.1016/j.jallcom.2008.01.110

Google Scholar

[10] Y. Zhao, M. Chen, X. Liu, T. Xu, W. Liu, Electrochemical synthesis of polydiphenylamine nanofibrils through AAO template, Mater. Chem. Phys. 91 (2005) 518-523.

DOI: 10.1016/j.matchemphys.2004.12.019

Google Scholar

[11] A.C. Crossland, G.E. Thompson, C.J.E. Smith, H. Habazaki, K. Shimizu, P. Skeldon, Formation of manganese-rich layers during anodizing of Al-Mn alloys, Corros. Sci. 41 (1999) 2053-2069.

DOI: 10.1016/s0010-938x(99)00025-6

Google Scholar

[12] C.H. Voon, M.N. Derman, U. Hashim, K.R. Ahmad, L.N. Ho, A simple one-step anodising method for the synthesis of ordered porous anodic alumina, J. Exp. Nanosci. (2012) 1-7.

DOI: 10.1080/17458080.2011.630151

Google Scholar

[13] O. Jessensky, F. Muller, U. Gosele, Self-Organized Formation of Hexagonal Pore Structures in Anodic Alumina, J. Electrochem. Soc. 145 (1998) 3735-3740.

DOI: 10.1149/1.1838867

Google Scholar

[14] S. Ono, M. Saito, M. Ishiguro, H. Asoh, Controlling factor of self-ordering of anodic porous alumina, J. Electrochem. Soc. 151 (2004) B473-B478.

DOI: 10.1149/1.1767838

Google Scholar

[15] V.P. Parkhutik V.I. Shershulsky, Theoretical modelling of porous oxide growth on aluminium, J. Phys. D: Appl. Phys. 25 (1992) 1258-1263.

DOI: 10.1088/0022-3727/25/8/017

Google Scholar

[16] J.P. O'Sullivan G.C. Wood, The morphology and mechanism of formation of porous anodic films on aluminium, Proc Roy Soc Lond Math Phys Sci 317 (1970) 511-543.

DOI: 10.1098/rspa.1970.0129

Google Scholar

[17] L. Zaraska, G.D. Sulka, J. Szeremeta, M. Jaskuła, Porous anodic alumina formed by anodization of aluminum alloy (AA1050) and high purity aluminum, Electrochim. Acta 55 (2010) 4377-4386.

DOI: 10.1016/j.electacta.2009.12.054

Google Scholar

[18] S.-K. Hwang, S.-H. Jeong, H.-Y. Hwang, O.-J. Lee, K.-H. Lee, Fabrication of highly ordered pore array in anodic aluminum oxide, Korean J. Chem. Eng. 19 (2002) 467-473.

DOI: 10.1007/bf02697158

Google Scholar

[19] G.D. Sulka W.J. Stepniowski, Structural features of self-organized nanopore arrays formed by anodization of aluminum in oxalic acid at relatively high temperatures, Electrochim. Acta 54 (2009) 3683-3691.

DOI: 10.1016/j.electacta.2009.01.046

Google Scholar

[20] S.K. Thamida,H.-C. Chang, Nanoscale pore formation dynamics during aluminum anodization, Chaos 12 (2002) 240-251.

DOI: 10.1063/1.1436499

Google Scholar