A New Image Fusion Method Based on Improved PCNN and Multiscale Decomposition

Article Preview

Abstract:

A new image fusion algorithm based on nonsubsampled contourlet transform and spiking cortical model is proposed in this paper. Considering the human visual system characteristics, two different fusion rules are used to fuse the low and high frequency sub-bands of nonsubsampled contourlet transform respectively. A new maximum selection rule is defined to fuse low frequency coefficients. Spatial frequency is used for the fusion rule of high frequency coefficients. Experimental results demonstrate the effectiveness of the proposed fusion method.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 834-836)

Pages:

1011-1015

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Do, M. N., & Vetterli, M. (2005). The contourlet transform: an efficient directional multiresolution image representation. IEEE Transactions on Image Processing, 14(12), 2091-2106.

DOI: 10.1109/tip.2005.859376

Google Scholar

[2] Da Cunha, A. L., Zhou, J., & Do, M. N. (2006). The nonsubsampled contourlet transform: theory, design, and applications.  IEEE Transactions on Image Processing, 15(10), 3089-3101.

DOI: 10.1109/tip.2006.877507

Google Scholar

[3] Johnson, J. L., & Padgett, M. L. (1999). PCNN models and applications.  IEEE Transactions on Neural Networks, 10(3), 480-498.

DOI: 10.1109/72.761706

Google Scholar

[4] Wang, Z., Ma, Y., & Gu, J. (2010). Multi-focus image fusion using PCNN. Pattern Recognition, 43(6), 2003-(2016).

DOI: 10.1016/j.patcog.2010.01.011

Google Scholar

[5] Zhan, K., Zhang, H., & Ma, Y. (2009). New spiking cortical model for invariant texture retrieval and image processing.  IEEE Transactions on Neural Networks, 20(12), 1980-(1986).

DOI: 10.1109/tnn.2009.2030585

Google Scholar

[6] Li, H., Manjunath, B. S., & Mitra, S. K. (1995). Multisensor image fusion using the wavelet transform. Graphical models and image processing, 57(3), 235-245.

DOI: 10.1006/gmip.1995.1022

Google Scholar

[7] Eskicioglu, A. M., & Fisher, P. S. (1995). Image quality measures and their performance.  IEEE Transactions on Communications, 43(12), 2959-2965.

DOI: 10.1109/26.477498

Google Scholar

[8] Qu, G., Zhang, D., & Yan, P. (2002). Information measure for performance of image fusion. Electronics letters, 38(7), 313-315.

Google Scholar

[9] Xydeas, C. S., & Petrovic, V. (2000). Objective image fusion performance measure. Electronics Letters, 36(4), 308-309.

DOI: 10.1049/el:20000267

Google Scholar

[10] Wang, Z., Ma, Y., Cheng, F., & Yang, L. (2010). Review of pulse-coupled neural networks. Image and Vision Computing, 28(1), 5-13.

DOI: 10.1016/j.imavis.2009.06.007

Google Scholar