[1]
J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson. Atlas of Finite Groups, Clarendon Press (Oxford), London / New York, (1985).
Google Scholar
[2]
A. R. Moghaddamfar, A. R. Zokayi and M. R. Darafsheh. A characterization of finite simple groups by the degrees of vertices of their prime graphs: Algebra Colloquium, 12(3), (2005), 431-442.
DOI: 10.1142/s1005386705000398
Google Scholar
[3]
A. R. Moghaddamfar and A. R. Zokayi. OD -Characterization of alternating and symmetric groups of degrees 16 and 22 , Frontiers of Mathematics in China, 4(4), (2009), 669-680.
DOI: 10.1007/s11464-009-0037-1
Google Scholar
[4]
A. A. Hoseini and A. R. Moghaddamfar. it Recognizing alternating groups Ap+3 for certain primes p by their orders and degree patterns, Frontiers of Mathematics in China, 5(3), (2010), 541-553.
DOI: 10.1007/s11464-010-0011-y
Google Scholar
[5]
A. R. Moghaddamfar and A. R. Zokayi. Recognizing finite groups through order and degree pattern, in Algebra Colloquium, Algebra Colloquium, 15(3), (2008), 449-456.
DOI: 10.1142/s1005386708000424
Google Scholar
[6]
L. C. Zhang and W. J. Shi. OD-characterization of simple K4-groups, Algebra Colloquium, 16(2), (2009), 275-282.
DOI: 10.1142/s1005386709000273
Google Scholar
[7]
Y. X. Yan. OD -characterization of certain symmetric groups having connected prime graphs. Journal of Southwest University, 36(5), (2011), 112-115.
Google Scholar
[8]
Y. X. Yan, H. J. Xu, G. Y. Chen, OD-characterization of the automorphism groups of simple K3-groups, Journal of Inequalities and Applications , 2013, 95: 1-11.
Google Scholar
[9]
Y. X. Yan, G. Y. Chen, L. L. Wang, OD-characterization of the automorphism groups of O±10(2)[J], Indian J. pure Appl. Math., 2012, 43(3): 183-195.
DOI: 10.1007/s13226-012-0011-6
Google Scholar
[10]
Y. X. Yan, G. Y. Chen, L. C. Zhang, H. J. Xu, Recognizing finite groups through order and degree pattern, to appear in Chinese Annals of Mathema tics, (2012).
Google Scholar
[11]
L. C. Zhang and W. J. Shi. OD -Characterization of almost simple groups related to U3(5) , Acta Mathematica.
Google Scholar
[12]
L. C. Zhang and W. J. Shi. OD -Characterization of almost simple groups related to U6(2) , Acta Mathematica Scientia (Series B), 31B(2), (2011), 441-450.
DOI: 10.1016/s0252-9602(11)60244-0
Google Scholar
[13]
Y. X. Yan, OD-Characterization of the symmetric group S49, Advanced Material Research, 2011, 535-537: 2596-2599.
Google Scholar
[14]
Y. X. Yan, G. Y. Chen, OD-characterization of alternating and symmetric groups of degree 106 and 112, Proceedings of the International Conference on Algebra 2010, 2011: 690-696.
DOI: 10.1142/9789814366311_0055
Google Scholar
[15]
Y. X. Yan, G. Y. Chen, A New Characterization of Certain Symmetric and Alternating Groups,to appear in Advances in Mathematics (in China),2012. 11.
Google Scholar
[16]
Y. X. Yan, OD-characterization of almost simple groups related to the chevalley groups F4(2)[J], Journal of Southwest University, 2011, 33(5): 112-115.
Google Scholar
[17]
Y. X. Yan, OD-Characterization of the symmetric Group S28, Advanced Material Research, 2011, 396-398: 140-143.
Google Scholar
[18]
Zavarnitsine A, Mazurov V D. Element orders in covering of symmetric and alternating groups. Algrbra and Logic, 38(3), (1999), 159-170.
DOI: 10.1007/bf02671740
Google Scholar
[19]
A. V. Zavarnitsine, Finite simple groups with narrow prime spectrum, Siberian Electronic Mathematical Reports, 6, 2009, 1-12.
Google Scholar
[20]
A. V. Zavarnitsin. Recognition of alternating groups of degrees r+1 and r+2 for prime r and the group of degree 16 by their element order sets, Algebra and Logic, 39(6), (2000), 370-477.
Google Scholar