[1]
N.M. Stark and L.M. Matuana: Coating WPCs Using Co-Extrusion to Improve Durability, Conference Coating Wood and Wood Composites: Designing for Durability, Proceedings, Seattle, WA (2007).
Google Scholar
[2]
S. Jin and L.M. Matuana: Coextruded PVC/Wood-Flour Composites With WPC Cap Layers. Journal of Vinyl and Additive Technology 14, 197–203 (2008).
DOI: 10.1002/vnl.20162
Google Scholar
[3]
S. Jin and L.M. Matuana: Wood/plastic composites co-extruded with multi-walled carbon nanotube-filled rigid poly(vinyl chloride) cap layer. Polymer International 59, 648–657 (2010).
DOI: 10.1002/pi.2745
Google Scholar
[4]
F. Yao and Q. Wu: Co-extruded polyethylene and wood-flour composite: Effect of shell thickness, wood loading, and core quality. Journal of Applied Polymer Science 118, 3594–360(2010).
DOI: 10.1002/app.32742
Google Scholar
[5]
B.J. Kim, F. Yao, Q. Wang and Q. Wu: Mechanical and physical properties of core-shell structured wood plastic composites: effect of shells with hybrid mineral and wood filler. Composites: Part B 45, 1040–1048 (2013).
DOI: 10.1016/j.compositesb.2012.07.031
Google Scholar
[6]
R. Huang, B.J. Kim, S. Lee, Z. Yang and Q. Wu: Co-extruded Wood-Plastic Composites with Talc-Filled Shell: Morphology, Mechanical, and Thermal Expansion Performance. BioResources 8(2), 2283–2299 (2013).
DOI: 10.15376/biores.8.2.2283-2299
Google Scholar
[7]
I. Siró and D. Plackett: Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17, 459-494 (2010).
DOI: 10.1007/s10570-010-9405-y
Google Scholar
[8]
W. Hamad: On the Development and Applications of Cellulosic Nanofibrillar and Nanocrystalline. Materials, The Canadian Journal of Chemical Engineering 84, 513-519 (2006).
DOI: 10.1002/cjce.5450840501
Google Scholar
[9]
S.J. Yeoh, W.Y. Hamad and F.K. Ko: Electrospun Cellulose Ultra-fine Fibers from Kraft Pulp, Conference ICCM-17 17th International Conference on Composite Materials, Proceedings, Edinburgh, UK (2009).
Google Scholar
[10]
D.J. Gardner, G.S. Oporto, R. Mills and M.A.S.A. Samir: Adhesion and Surface Issues in Cellulose and Nanocellulose. Journal of Adhesion Science and Technology 22, 545-567 (2008).
DOI: 10.1163/156856108x295509
Google Scholar
[11]
L. Suryanegara, A.N. Nakagito and H. Yano: The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Composite Science and Technology 69, 1187–1192 (2009).
DOI: 10.1016/j.compscitech.2009.02.022
Google Scholar
[12]
T. Zimmermann, E. Pöhler and T. Geiger: Cellulose fibrils for polymer reinforcement. Advanced Engineering Materials 6(9), 754–761 (2004).
DOI: 10.1002/adem.200400097
Google Scholar
[13]
A.N. Nakagaito and H. Yano: Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Applied Physics A 80(1), 155–159 (2005).
DOI: 10.1007/s00339-003-2225-2
Google Scholar
[14]
A. Ashori and A. Nourbakhsh: Performance properties of microcrystalline cellulose as a reinforcing agent in wood plastic composite. Composites Part B 41, 578–58 (2010).
DOI: 10.1016/j.compositesb.2010.05.004
Google Scholar
[15]
R. Sabo, L. Jin, N. Stark and R.E. Ibach: Effect of Environmental Conditions on the Mechanical Properties and Fungal Degradation of Polycaprolactone/Microcrystalline Cellulose/Wood Flour Composites. BioResources 8(3), 3322–3335 (2013).
DOI: 10.15376/biores.8.3.3322-3335
Google Scholar
[16]
M. Henriksson, G. Henriksson, L.A. Berglund and T. Lindström: An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibres. European Polymer Journal 43, 3434–3441 (2007).
DOI: 10.1016/j.eurpolymj.2007.05.038
Google Scholar
[17]
S. Kalia, B.S. Kaith and I. Kaur: Pretreatments of Natural Fibres and their Application as Reinforcing Material in Polymer Composites –A Review. Polymer Engineering and Science49, 1253–1272 (2009).
DOI: 10.1002/pen.21328
Google Scholar
[18]
N. Lavoine, I. Desloges, A. Dufresne and J. Bras: Microfibrillated cellulose – Its barrier properties and applications in cellulosic materials: A review. Carbohydrate Polymers 90, 735–764 (2012).
DOI: 10.1016/j.carbpol.2012.05.026
Google Scholar
[19]
L. Matuana and J. -W. Kim: Fusion Characteristics of Rigid PVC/Wood-Flour Composites by Torque Rheometry. Journal of Vinyl and Additive Technology 13(1), 7–13 (2007).
DOI: 10.1002/vnl.20092
Google Scholar
[20]
G.H.D. Tonoli, M.N. Belgacem, J. Bras, M.A. Pereira-da-Silva, F.A. Rocco Lahr and H. Savastano: Impact of bleaching pine fibre on the fibre/cement interface. Journal Material Science 47, 4167–4177 (2012).
DOI: 10.1007/s10853-012-6271-z
Google Scholar
[21]
R. Gu, B.V. Kokta, D. Michalkova, B. Dimzoski, I. Fortelny, M. Slouf and Z. Krulis: Characteristics of wood-plastic composites reinforced with organo-nanoclays. Journal of Reinforced Plastics and Composites 29(24), 3566–3586 (2010).
DOI: 10.1177/0731684410378543
Google Scholar
[22]
A. Iwatake, M. Nogi and N. Yano: Cellulose nanofiber-reinforced polylactic acid. Composite Science and Technology 68, 2103–2106 (2008).
DOI: 10.1016/j.compscitech.2008.03.006
Google Scholar
[23]
R. Evans, R.H. Newman, U.C. Roick, I.D. Suckling and A.F.A. Wallis: Changes in Cellulose Crystallinity During Kraft Pulping. Comparison of Infrared, X-ray Diffraction and Solid State NMR Results. Holzforschung 49, 498–504 (1995).
DOI: 10.1515/hfsg.1995.49.6.498
Google Scholar
[24]
K. Abe and H. Yano: Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose 16, 1017–1023 (2009).
DOI: 10.1007/s10570-009-9334-9
Google Scholar
[25]
C. Aulin, S. Ahola, P. Josefsson, T. Nishino, Y. Hirose, M. Österberg and L. Wågberg: Nanoscale Cellulose Film with Different Crystallinities and Mesostructures–Their Surface Properties and Interaction with Water. Langmuir 25, 7675–7685 (2009).
DOI: 10.1021/la900323n
Google Scholar