[1]
Ahn, K.G. and Cho, D.W., Proposition for a volumetric error model considering backlash in machine tools, Int. J. Adv. Manuf. Technol., Vol. 15, (1999), p.554–561.
DOI: 10.1007/s001700050101
Google Scholar
[2]
Anthony Chukwujekwu Okafor, Yalcin M. Ertekin., Vertical Machining Center accuracy characterization using laser interferometer Part 1: Linear positional errors, / Journal of Materials Processing Technology, 105, nr. 3, (2000), pp.394-406.
DOI: 10.1016/s0924-0136(00)00661-0
Google Scholar
[3]
Castro, H. F. F. & Burdekin, M., Dynamic calibration of the positioning accuracy of machine tools and coordinate measuring machines using a laser interferometer. Int. J. Mach. Tools Man., Vol. 43, No. 9, (2003), pp.947-954.
DOI: 10.1016/s0890-6955(03)00083-x
Google Scholar
[4]
Choi J. P., Minb B.K., Lee S. J., Reduction of machining errors of a three-axis machine tools by on-machine measurement and error compensation system, Journal of Materials Processing Technology, vol. 155-156, (2004), p.2056-(2064).
DOI: 10.1016/j.jmatprotec.2004.04.402
Google Scholar
[5]
Ferreira, P. M.; Liu, C. R., A contribution to the analysis and compensations of the geometric error of a machining center, / CIRP Annals-Manufacturing Technology, 35, (1986), pp.259-262.
DOI: 10.1016/s0007-8506(07)61883-6
Google Scholar
[6]
Ganea, M., Masini unelte flexibile si echipamente tehnologice pentru prelucrarea pieselor prismatice Vol. 2: Module si echipamente specifice celulelor si sistemelor flexibile. Calitatea si receptia masinilor unelte CNC, ISBN 978-606-10-0339-6, Ed. Univ. din Oradea, 2010, pp.184-240.
Google Scholar
[7]
Hsu Y,Y. and Wang, S.S., A new compensation method for geometry errors of five-axis machine tools, International Journal of Machine Tools & Manufacture, No. 47, (2007), p.352–360.
DOI: 10.1016/j.ijmachtools.2006.03.008
Google Scholar
[8]
ISO 230-2: 2006: Test code for machine tools - Part 2: Determination of accuracy and repeatability of positioning numerically controlled axes. International Organization for Standardization, (2006).
DOI: 10.3403/30107093
Google Scholar
[9]
ISO 3070-3 Test conditions for boring and milling machines with horizontal spindle - Testing of the accuracy - Part 3: Floor type machines with detached, stationary work-holding table.
DOI: 10.3403/01615371
Google Scholar
[10]
ISO10791-1: 1998 Test conditions for machining centres - Part 1: Geometric tests for machines with horizontal spindle and with accessory heads (horizontal Z-axis).
DOI: 10.3403/01934547u
Google Scholar
[11]
Iwasawa K., Iwamaa A., Mitsui K., Development of a measuring method for several types of programmed tool paths for NC machine tools using a laser displacement interferometer and rotary encoder, " Precision Engineering, vol. 28, pp.399-408, (2004).
DOI: 10.1016/j.precisioneng.2004.01.004
Google Scholar
[12]
Lei, W.T. and Hsu, Y.Y., Accuracy enhancement of five-axis CNC machines through real-time error compensation, International Journal of Machine Tools & Manufacture, No. 43, (2003) p.871–877.
DOI: 10.1016/s0890-6955(03)00089-0
Google Scholar
[13]
Okafor A.C. and Errekin Y.M., Vertical machining center accuracy characterization using laser interferometer Part1. Linear positional errors. Journal of Materials Processing Technology, 105, (2000), pp.394-406.
DOI: 10.1016/s0924-0136(00)00661-0
Google Scholar
[14]
Ramesh, R. & Mannan, M. A., Error compensation in machine tools - a review Part I: geometric, cutting force induced and fixture-dependent errors. Int. J. Mach. Tools Man., Vol. 40, No. 9, (2000), pp.1235-1256.
DOI: 10.1016/s0890-6955(00)00009-2
Google Scholar
[15]
VDI/DGQ 3441 Statistical testing of the operational and positional accuracy of machine tools.
Google Scholar
[16]
http: /resources. renishaw. com/en/download/brochure-xl-80-laser-system-36870.
Google Scholar
[17]
http: /www. renishaw. com/en/measurement-optics-for-xl-80-8427.
Google Scholar
[18]
www. renishaw. com.
Google Scholar