[1]
Mollah M Yousuf A, Padmavathy Palta, Thomas R Hess. Chemical anf physical sffects of sodium lignosulfonate superplasticizer on the hydration of portland cement and solidification/stabilization consequences. Cement and Concnte Research, 1995, 25(3): 671-682.
DOI: 10.1016/0008-8846(95)00055-h
Google Scholar
[2]
Xinping Ouyang, Xueqin Qiu, Chen P. Physicochemical characterization of calcium lignosulfonate—A potentially useful water reducer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 282–283: 489-497.
DOI: 10.1016/j.colsurfa.2005.12.020
Google Scholar
[3]
Princc W, Espagne M, Aitcin P C. Interaction between ettringite and a polynaphthalene sulfonate superplasticizer in a cementitious paste. Cement and Concrete Research, 2002, 32(1): 79-85.
DOI: 10.1016/s0008-8846(01)00632-9
Google Scholar
[4]
Simone Knaus, Birgit Bauer-Heim. Synthesis and properties of anionic cellulose ethers: influence of functional groups and molecular weight on flowability of concrete. Carbohydrate Polymers, 2003, 53: 383–394.
DOI: 10.1016/s0144-8617(03)00106-1
Google Scholar
[5]
Vieira M C, Klemm D, Einfeldt L, et al. Dispersing agents for cement based on modified polysaccharides. Cement and Concrete Research, 2005, 35(5): 883– 890.
DOI: 10.1016/j.cemconres.2004.09.022
Google Scholar
[6]
Dong-Fang Zhang, Ben-Zhi Ju, Shu-Fen Zhang, et al. Dispersing Mechanism of Carboxymethyl Starch as Water-Reducing Agent. Journal of Applied Polymer Science, 2007, 105: 486–491.
DOI: 10.1002/app.26152
Google Scholar
[7]
Dong-Fang Zhang, Ben-Zhi Ju, Shu-Fen Zhang, et al. The study on the synthesis and action mechanism of starch succinate half ester as water-reducing agent with super retarding performance. CarbohydratePolymers, 2007, 70(4): 363-368.
DOI: 10.1016/j.carbpol.2007.05.020
Google Scholar
[8]
Johann Plank, Christof Schroefl, Mirko Gruber, Matthias Lesti and Roland Sieber. Effectiveness of Polycarboxylate Superplasticizers in Ultra-High Strength Concrete: The Importance of PCE Compatibility with Silica Fume. Journal of Advanced Concrete Technology, 7(1): 5-12.
DOI: 10.3151/jact.7.5
Google Scholar
[9]
WANG Li-jiu, HUANG Feng-yuan, MA Xi-chen, ZHANG Hong. Synthesis and Properties of Water-Soluble Cellulose Ether Based Concrete Water-Reducing Agent. Journal of Building Materials, 2008, (1): 52-57.
Google Scholar
[10]
WANG Li-jiu, HUANG Feng-yuan, MA Xi-chen, ZHANG Hong. Preparations and applications of cellulose-based concrete high-range water-reducing agent. Journal of Dalian University of Technology, 2008, (5): 679-684.
Google Scholar
[11]
Pourchez J, Grosseau P, Guyonnet R, et al. HEC influence on cement hydration measured by conductometry. Cement and Concrete Research, 2006, 36 (9): 1777–1780.
DOI: 10.1016/j.cemconres.2006.06.002
Google Scholar
[12]
Pourchez J, Peschard A, Grosseau P, et al. HPMC and HEMC influence on cement hydration. Cement and Concrete Research, 2006, 36(2): 288–294.
DOI: 10.1016/j.cemconres.2005.08.003
Google Scholar
[13]
Ramachandran V S. Application of differential thermal analysis in Cement Chemistry. New York: Chemical Publishing Co. Inc. (1969).
Google Scholar
[14]
G. Kakali, E. Chniotakis, S. Tsivilis, E. Danassis. Differential Scanning Calorimetry-A Useful Tool for Prediction of the Reactivity of Cement Raw Meal. Journal of thermal analysis. 1998, 32: 871-879.
DOI: 10.1023/a:1010191313867
Google Scholar