Simultaneous Removal of SO2 and NO from Flue Gas Using Ozone

Article Preview

Abstract:

The objective of this work was to study the effect of some operating condition on the simultaneous removal of NO and SO2 from simulated flue gas in the lab-scale agitated bubbling reactor. The experimental results showed that NO removal efficiency increased with the increase in the molar ratio of O3/NO, while removal efficiency of SO2 decreased. When absorption liquid changed from distilled water to Na2CO3 solution, it is observed that removal efficiencies of NO and SO2 increase with the increase in the concentration of Na2CO3 solution. At 0.08 mol/L of Na2CO3 solution, the removal efficiencies of SO2 and NO are 100% and 93%, respectively

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 838-841)

Pages:

2721-2725

Citation:

Online since:

November 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.T. Liu, A.M. Mahatar N.F. Zaindin,S. Bhatia and A.R. Mohanmed: Fuel, Vol. 84 (2005), p.143.

Google Scholar

[2] US,E.I.A. Electic Power Annual 2008, Washington: (2010).

Google Scholar

[3] Q. Liu and Z. Liu: Fuel, Vol. 108 (2013), p.149.

Google Scholar

[4] J.I. Shucherow J.A. Stecial D.L. Wise etc: Rec. Conserv. Rec, Vol. 16 (1996), p.15.

Google Scholar

[5] A. Bueno-LopeZ and A. Garcia-Garcia: Fuel Processing Technology, Vol. 86 (2005), p.1745.

Google Scholar

[6] Y. Liu, T.M. Bisson H.Q. Yang Z.H. Xu: Fuel Processing Technology, Vol. 91(2010), p.1175.

Google Scholar

[7] Environmental impacts of coal power: air pollution. http: /www. ucsusa. org/clean_energy/ coalvswind/c02c. html (accessed June 22, 2009).

Google Scholar

[8] N.D. Hutson,R. Krzyzynska and R.K. Srivastava: Ind. Eng. Chem. Res, Vol. 47(2008), p.5825.

Google Scholar

[9] F. Xu,Z.Y. Luo,W. Cao and P. Wang: Fuel Process Technol, Vol. 89(2008), p.540.

Google Scholar

[10] Y. Zhao,L. Zhao H.X. Jing and Y. Yi: Sci. China. Tech. Sci, Vol. 3(2008), p.268.

Google Scholar

[11] Y.X. Liu,J. Zhang J.F. PandTang and A.K. Tang: Energy Fuels, Vol. 26(2012), p.5430.

Google Scholar

[12] S.C. Ma,J.X. Ma and Y. Zhao: Proc CSEE, Vol. 5(2009), p.27.

Google Scholar

[13] Y.X. Liu,J. Zhang and C.D. Sheng: Energy Fuels, Vol. 24(2010), p.4930.

Google Scholar

[14] Y. Zhao,L. Zhao. H.X. Jing and Y. Yi: Sci China Tech Sci, Vol. 3(2008), p.268.

Google Scholar

[15] R.T. Guo W.G. Pan X.B. Zhang and J.X. Ren: Fuel, Vol. 90(2011), p.3295.

Google Scholar

[16] X.L. Long W.D. Xiao and W.K. Yuan: Chemosphere, Vol, 59(2005), p.811.

Google Scholar

[17] D.S. Jin B.R. Dshwal Y.S. Park and H.K. Lee:J. Hazard. Mater, B , Vol, 135(2006), p.412.

Google Scholar

[18] H. Chu T.W. Chien and S.Y. Liu: Sci. Total. Environ, Vol. 275(2001), p.127.

Google Scholar

[19] X. Xu and S.G. Chang: Chemosphere, Vol. 67(2007), p.1628.

Google Scholar

[20] B.R. Dshwal D.S. Jin S.H. Lee S.H. Moonband H.K. Lee: J. Hazard. Mater, Vol, 150(2008), p.649.

Google Scholar

[21] J.V. Durme,J. Dewulf,C. Leys and H.V. Langenhove: Appl Cata B: Environ, Vol, 78(2008), p.324.

Google Scholar

[22] S.Y. Park B.R. Deshwal and S. H, Moon: Fuel Process Technol, Vol. 99(2008), p.540.

Google Scholar