SAR Image Denoising Using an Improved Adaptive Bitateral Filter

Article Preview

Abstract:

Synthetic aperture radar (SAR) images are inherently affected by multiplicative speckle noise. The presence of speckle damages radiometric resolution, at the same time, it hampers the human interpretation and scene analysis for SAR images. On the base of studying and analyzing the mathematical model of the bilateral filter, the paper proposed a modified adaptive bilateral filter (MABF). First, it separates non-independent two-dimensional Gaussian filter into two independent one-dimensional Gaussian filter, which improves the operation speed greatly. Then through the effective noise parameter estimation, it adaptively selects optimal parameters, which improves the filtering effect. The real SAR image data is used to test the presented method and the experimental results verify that MABF is feasible and effective.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

672-677

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.W. Goodman, some fundamental properties of speckle, J. Opt. Soc. Amer., Vol. 66 (1976) , pp.145-1150.

Google Scholar

[2] J.G. Abbott, F.L. Thurstone, Acoustic speckle: Theory and experimental analysis, Ultrasonic Imaging, Vol. 1 (1979), pp.303-324.

DOI: 10.1177/016173467900100402

Google Scholar

[3] J.S. Lee, I. Jurkevich, P. Dewaele, P. Wambacq, A. Oosterlink, Speckle filtering of synthetic aperture radar images: a review, Remote Sensing Reviews, Vol. 8 (1994), pp.313-340.

DOI: 10.1080/02757259409532206

Google Scholar

[4] V.S. Frost, J.A. Stiles, K.S. Shanmugan, J.C. Holtzman, A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Transaction of pattern Analysis and Machine Intelligence. Vol. 4 (1982), pp.157-166.

DOI: 10.1109/tpami.1982.4767223

Google Scholar

[5] D.T. Kuan, A. A Sawchuk, T.C. Stand, P. Chavel, Adaptive noise smoothing filtering for image with signal-dependent noise, IEEE Transaction of Pattern Analysis and Machine Intelligence, Vol. 7 (1985), pp.165-177.

DOI: 10.1109/tpami.1985.4767641

Google Scholar

[6] J.S. Lee, Digital image enhancement and noise filtering by use of local stastics, IEEE Transactions of Pattern Analysis and Machine Intelligence, Vol. 2 (1980), pp.165-168.

DOI: 10.1109/tpami.1980.4766994

Google Scholar

[7] A. Achim, P. Tsakalides, A. Bezeranos, SAR image denoising Via Bayesian wavelet Shrinkage based on heavy-Tailed modeling, IEEE Transactions on Geoscience and Remote Sensing, Vol. 41(2003) . pp.1773-1784.

DOI: 10.1109/tgrs.2003.813488

Google Scholar

[8] S. Solbo, T. Eltoft, Hommomorphic wavelet-based statistical despeckling of SAR images, IEEE Transactions on Geoscience and Remote Sensing, Vol. 42 (2004), pp.711-721.

DOI: 10.1109/tgrs.2003.821885

Google Scholar

[9] M. Mastriani A.E. Giraldez, Kalman's shrinkage for wavelet-based despeckling of SAR images, International journal of intelligent technology, Vol. 3 (2006), pp.190-196.

Google Scholar

[10] Shi-qi Huang, Dai-zhi Liu, Gui-qing Gao, Xi-jian Guo, A novel method for speckle noise reduction and ship target detection in SAR images. Vol . 42(2009), pp.1533-1542.

DOI: 10.1016/j.patcog.2009.01.013

Google Scholar

[11] Maria Elena Buemi, Julio Jacobo, Marta Mejail, SAR image processing using adaptive stack filter. Pattern Recognition Letters, Vol. 31(2010), pp.307-314.

DOI: 10.1016/j.patrec.2009.02.008

Google Scholar

[12] Pham T. Q, Vliet L. J, Separable filtering for fast video preprocessing, Proceeding of IEEE international Conference on Multimedia and Expo, (2005), pp.454-457.

DOI: 10.1109/icme.2005.1521458

Google Scholar