Thermal Properties of Multiwalled Carbon Nanotubes-Alumina (MWCNT-Al2O3) Hybrid Filled Silicone Rubber Composites

Article Preview

Abstract:

A hybrid compound of multiwalled carbon nanotubes-alumina (MWCNT-Al2O3) was successfully synthesized using chemical vapour deposition (CVD) method. MWCNT-Al2O3 at three different weight percent (0.5wt.%, 1.0wt.% and 1.5wt.%) was added into Silicone rubber of Polydimethylsiloxane (PDMS) using ultrasonic sonicator. Thermal analysis Differential Scanning Calorimetry (DSC) and Thermogravimetry (TGA) was performed on each composites and their thermal stability was compared. TGA thermogram showed that 1.0wt.% and 1.5wt% of hybrid compound had more weight loss recorded at decomposition temperature of 400°C. In addition, DSC thermogram also indicated that heat of fusion increased with increasing content (wt.%) of hybrid compound MWCNT-Al2O3 in the Polydimethylsiloxane composites. It was found that the presence of MWCNT-Al2O3 hybrid compound had changed the internal energy and the mass loss of the composite.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

330-333

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Hennrich, C. Chan, V. Moore, M. Rolandi, M. O'Connell, Chapter one-The element carbon, Carbon Nanotubes: Properties and applications, CRC Press, Boca Raton (2006), pp.1-18.

DOI: 10.1201/9781420004212.ch1

Google Scholar

[2] P.M. Ajayan, O.Z. Zhou M.S. Dresselhaus, Applications of carbon nanotubes, in: M.S. Dresselhaus, G. Dresselhaus, Ph. Avouris (Eds. ), Carbon Nanotubes, Topics Apply. Phys. 80, Springer-Verlag Berlin Heidelberg, 2001, pp.391-425.

DOI: 10.1007/3-540-39947-x

Google Scholar

[3] I. Yakobson Boris, P. Avouris, Mechanical properties of carbon nanotubes, Carbon Nanotubes, Top. Appl. Phys. 80 (2001) 287-327.

DOI: 10.1007/3-540-39947-x_12

Google Scholar

[4] S. Rodney Ruoff, C. Donald Lorents, Mechanical and thermal properties of carbon nanotubes, Carbon 33 (7) (1995) 925-930.

DOI: 10.1016/0008-6223(95)00021-5

Google Scholar

[5] J. Justin Gooding, Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing, Electrochim. Acta 50 (15) (2005) 3049-3060.

DOI: 10.1016/j.electacta.2004.08.052

Google Scholar

[6] J.N. Coleman, U. Khan, Y. K. Gun'ko, Mechanical reinforcement of polymers using carbon nanotubes, Adv. Mater. 18 (6) (2006) 689-706.

DOI: 10.1002/adma.200501851

Google Scholar

[7] A. Mata, A. J. Fleischman, S. Roy, Characterization of Polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems, Biomed. Microdevices 7 (4) (2005) 281-293.

DOI: 10.1007/s10544-005-6070-2

Google Scholar

[8] S.D. Burnside, E.P. Giannelis, Synthesis and properties of new poly (dimethylsiloxane) nanocomposites, Chem. Mater. 7 (9) (1995) 1597-1600.

DOI: 10.1021/cm00057a001

Google Scholar

[9] Y.Y. Huang, S. V. Ahir, E.M. Terentjev, Dispersion rheology of carbon nanotubes in a polymer matrix, Phys. Rev. B 73 (12) (2006) 125422.

DOI: 10.1103/physrevb.73.125422

Google Scholar

[10] M. Nour, K. Berean, M. J. Griffin, G. I. Matthews, M. Bhaskaran, S. Sriram, K. Kalantar-zadeh, Nanocomposite carbon-PDMS membranes for gas separation, Sens. Actuators, B: Chem. 161(1) (2012) 982-988.

DOI: 10.1016/j.snb.2011.11.079

Google Scholar

[11] A. Khosla, B.L. Gray, Preparation, characterization and micromolding of multi-walled carbon nanotube polydimethylsilxane conducting nanocomposites polymer, Mater. Lett. 63 (13-14) (2009) 1203-1206.

DOI: 10.1016/j.matlet.2009.02.043

Google Scholar

[12] C.G. Espinosa-González, F.J. Rodríguez-Macías, A.G. Cano-Márquez, J. Kaur, M.L. Shofner, Y.I. Vega-Cantú, Polystyrene composites with very high carbon nanotubes loadings by in situ grafting polymerization, J. Mater. Res. 28(8) (2013) 1087-1096.

DOI: 10.1557/jmr.2013.38

Google Scholar