Influence of Process Parameters on Surface Finish in Customized Bone Implant Using Selective Laser Sintering

Article Preview

Abstract:

Selective Laser Sintering (SLS) is a powder-based Additive Manufacturing process in which parts are built by sintering of selected areas of layers of Polyamide (PA12) powder using CO2 laser. The purpose of this work is to study experimentally the effect of orientation of the component, fill scan spacing and layer thickness on the surface roughness (Ra) of the customized bone implant fabricated through SLS technique. For this study computer tomography scan data was taken and converted to standard triangulation file (.stl) format using mimics software. Taguchis Design of Experiment approach was used for this study. An L27 Orthogonal Array (OA) of Taguchi design was used. Analysis of Variance (ANOVA) was then performed on S/N (Signal-to-Noise ratio) to determine the statistical significance and contribution of each factor on the surface roughness. The results indicated that orientation and layer thickness are significant parameters to cause appreciable improvement in surface finish.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

862-867

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Giannatsis, V. Dedoussis, Additive fabrication technologies applied to medicine and health care: a review, Int J Adv Manuf Techn, 40 (2009) 116-127.

DOI: 10.1007/s00170-007-1308-1

Google Scholar

[2] Prashanth K. Jain, Pulak M. Pandey, P. V. M. Rao, Effect of delay time on part strength laser sintering, Int J Adv Manuf Technol 43 (2009) 117-126.

DOI: 10.1007/s00170-008-1682-3

Google Scholar

[3] F. Rengier, A. Mehndiratta, H. vonTengg-Kobligk, C.M. Zechmann, R. Unterhinninghofen , H.U. Kauczor, F.L. Giesel, 3D printing based on imaging data: review of medicalapplications, Int J CARS 5 (2010) 335-341, DOI10. 1007/s11548-010-0476-x.

DOI: 10.1007/s11548-010-0476-x

Google Scholar

[4] Roadmap for additive manufacturing (RAM): identifying the future of freedom processing. National science foundation workshop; (2009).

Google Scholar

[5] Devika, D. and Arumaikkannu G, Finite Element Analysis and Rapid Prototyping to enhance the patient specific implant fabrication, SME Technical paper, published by SME Technical paper. (2009) 1-12.

Google Scholar

[6] Pham DT, Dimov SS, Lacan F, Selective laser sintering: applications and technological capabilities, J Eng Manuf 213 (1999) 435-449.

Google Scholar

[7] S.O. Onuh, K.K.B. Hon, Optimizing build parameters for improved surface finish in stereolithography. Int J Mach Tools Manuf 38(4) (1998) 329-345.

DOI: 10.1016/s0890-6955(97)00068-0

Google Scholar

[8] P. E. Reeves, & R. C. Cobb, Reducing the surface deviation of Stereolithography using in-process technique, Rapid Prototyping Journal, 3(1) (1997) 20-31.

DOI: 10.1108/13552549710169255

Google Scholar

[9] R. Anitha, S. Arunachalam, & P. Radhakrishnan, Critical parameters influencing the quality of the prototypes in fused deposition modelling, Journal of Material Processing Technology, 118 (2001) 385-388.

DOI: 10.1016/s0924-0136(01)00980-3

Google Scholar

[10] Y. Tumer, D. C. Thompson, K. L. Wood, & R. H. Crawford, Characterization of surface fault patterns with application to a layered manufacturing process, Journal of Manufacturing System, 17(1) (1995) 23-36.

DOI: 10.1016/s0278-6125(98)80007-1

Google Scholar

[11] B. Bacchewar, S. K. Singhal, P. M. Pandey, Statistical modelling and optimization of surface roughness in selective laser sintering process, Proceedings of IMechE - J Eng Manuf B 221(B) (2007) 35-52.

DOI: 10.1243/09544054jem670

Google Scholar

[12] C. J. L. Perez, J. Vivancos, & M. A. Sebastin, Geometric roughness analysis in solid freeform manufacturing process, Journal of Material Processing Technology, 119 (2001) 52-57.

Google Scholar

[13] P. K. Jain, P. B. Bacchewar, P. M. Pandey, Effect of Part bed temperature on surface roughness in SLS Process, Competitive Manufacturing – Proc of the 2nd Intl. & 23rd AIMTDR Conf 2008, 1109-1114.

Google Scholar

[14] Jordi Delgaso, Joaquim Ciurana, Ciro A Rodriguez, Influence of process parametes on part quality and mechanical properties for DMLS and SLM with iron-based materials, Int J Adv Manuf Technol 60 (2012) 601-210.

DOI: 10.1007/s00170-011-3643-5

Google Scholar

[15] Thompson DC, Crawford RH, Computational quality measures for evaluation of part orientation in freeform fabrication, Journal of Manufacturing Systems 16(4) (1997) 273-89.

DOI: 10.1016/s0278-6125(97)89098-x

Google Scholar

[16] Prashant K. Jain, K. Senthilkumaran, Pulak M. Pandey, Advances in materials for powder based rapid prototyping, In proceeding of International Conference on Recent Advances in Materials and Processing, (2006) PSG-Tech, Coimbatore, India.

Google Scholar

[17] K. Gautham, & M. Anderson, A design tool to control surface roughness in rapid fabrication, Proceedings of the Solid Freeform Fabrication Symposium, Austin, Texas, August (1998), 327-334.

Google Scholar

[18] V. Bharath, D. P. Natrajan, and M. Henderson, Sensitivity of RP surface finish to process parameter variation, Proceedings of the Solid Freeform Fabrication Symposium, Austin, Texas, August (2000), 251-258.

Google Scholar

[19] P. M. Pandey, N. V. Reddy, & S. G. Dhande, Improvement of surface finish by staircase machining in fused deposition modelling, Journal of Material Processing Technology, 132 (2003) 323-333.

DOI: 10.1016/s0924-0136(02)00953-6

Google Scholar

[20] R. I. Campbell, M. Martorelli, & H. S. Lee, Surface roughness visualization for rapid prototyping models, Computer Aided Design, 34 (2002) 717-725.

DOI: 10.1016/s0010-4485(01)00201-9

Google Scholar

[21] B. Caulfield, P. E. McHugh, S. Lohfeld, Depedence of mechanical properties of polyamide components on build parameters in the SLS process, Journal of Materials Processing Technology, 182 (2007) 477-488.

DOI: 10.1016/j.jmatprotec.2006.09.007

Google Scholar

[22] S. K. Ghosh, A. K. Das, S. Meena & P. Saha, Selective Laser Sintering of Tungsten Carbide and Cobalt Powder Mixture using Pulsed Nd: YAG Laser, Competitive Manufacturing – Proc. Of the 2nd Intl. & 23rd AIMTDR Con. (2008) 257-260.

DOI: 10.1007/978-81-322-2352-8_22

Google Scholar

[23] N. Chatterjee, S. Kumar, P. Saha, P. K. Mishra, & A. R. Choudhary, An experimental design approach to selective laser sintering of low carbon steel, Journal of Material Processing Technology, 136 (1998) 151-157.

DOI: 10.1016/s0924-0136(03)00132-8

Google Scholar