[1]
Ulutan, Durul, and Tugrul Ozel, Machining induced surface integrity in titanium and nickel alloys: a review, International Journal of Machine Tools and Manufacture 51 (2011) 250-280. .
DOI: 10.1016/j.ijmachtools.2010.11.003
Google Scholar
[2]
Ezugwu, E. O, High speed machining of aero-engine alloys, Journal of the Brazilian society of mechanical sciences and engineering 26 (2004) 1-11.
DOI: 10.1590/s1678-58782004000100001
Google Scholar
[3]
Babitsky, Vladimir I., et al. , Analysis of machinability of Ti-and Ni-based alloys, Solid State Phenomena 188 (2012) 330-338. .
DOI: 10.4028/www.scientific.net/ssp.188.330
Google Scholar
[4]
El Baradie, M. A, Cutting fluids: Part II. Recycling and clean machining, Journal of Materials Processing Technology 56 (1996) 798-806. .
DOI: 10.1016/0924-0136(95)01893-x
Google Scholar
[5]
Shokrani, Alborz, Vimal Dhokia, and Stephen T. Newman, Environmentally conscious machining of difficult-to-machine materials with regard to cutting fluids, International Journal of Machine Tools and Manufacture 57 (2012) 83-101. .
DOI: 10.1016/j.ijmachtools.2012.02.002
Google Scholar
[6]
El Baradie, M. A, Cutting fluids: Part I. Characterisation, Journal of Materials Processing Technology 56 (1996) 786-797. .
DOI: 10.1016/0924-0136(95)01892-1
Google Scholar
[7]
S. Sun, M. Brandt, M.S. Dargusch, Machining Ti–6Al–4V alloy with cryogenic compressed air cooling, International Journal of Machine Tools and Manufacture 50 (2010) 933-942.
DOI: 10.1016/j.ijmachtools.2010.08.003
Google Scholar
[8]
Dixit, Uday S., D. K. Sarma, and J. Paulo Davim, Environmentally friendly machining, Springer, 2012. .
Google Scholar
[9]
Su, Y., et al, Refrigerated cooling air cutting of difficult-to-cut materials, International Journal of Machine Tools and Manufacture 47 (2007) 927-933. .
DOI: 10.1016/j.ijmachtools.2006.07.005
Google Scholar
[10]
Li, Liang, Ning He, and Yu Su, Effect of Cryogenic Minimum Quantity Lubrication (CMQL) on Cutting Temperature and Tool Wear in High-Speed End Milling of Titanium Alloys, Applied Mechanics and Materials 34 (2010) 1816-1821. .
DOI: 10.4028/www.scientific.net/amm.34-35.1816
Google Scholar
[11]
Shaw, M. C, Metal cutting principles, Second ed., Oxford, UK, (2005).
Google Scholar
[12]
Cristino, V. A. M., P. A. R. Rosa, and P. A. F. Martins, Cutting under active and inert gas shields: A contribution to the mechanics of chip flow. " International Journal of Machine Tools and Manufacture 50 (2010) 892-900. .
DOI: 10.1016/j.ijmachtools.2010.06.003
Google Scholar
[13]
Walter, L, Carbon Dioxide as Cutting Tool Coolant Repays Research with Imposing Savings, Canadian Machining and Metalworking 76 (Aug. 1965) 94.
Google Scholar
[14]
Zhu, Dahu, Xiaoming Zhang, and Han Ding, Tool wear characteristics in machining of nickel-based superalloys, International Journal of Machine Tools and Manufacture (2012). .
DOI: 10.1016/j.ijmachtools.2012.08.001
Google Scholar
[15]
Ezugwu, E. O., and Z. M. Wang, Titanium alloys and their machinability- a review, Journal of Materials Processing Technology 68 (1997) 262-274. .
DOI: 10.1016/s0924-0136(96)00030-1
Google Scholar
[16]
Zhang, S., J. F. Li, and Y. W. Wang. , Tool life and cutting forces in end milling Inconel 718 under dry and minimum quantity cooling lubrication cutting conditions, Journal of Cleaner Production 32 (2012) 81-87.
DOI: 10.1016/j.jclepro.2012.03.014
Google Scholar
[17]
Kim, S. W., Lee, D. W., Kang, M. C., & Kim, J. S., Evaluation of machinability by cutting environments in high-speed milling of difficult-to-cut materials, Journal of materials processing technology 111 (2001) 256-260. .
DOI: 10.1016/s0924-0136(01)00529-5
Google Scholar
[18]
Su, Y., He, N., Li, L., & Li, X. L., An experimental investigation of effects of cooling/lubrication conditions on tool wear in high-speed end milling of Ti-6Al-4V, Wear 261 (2006) 760-766. .
DOI: 10.1016/j.wear.2006.01.013
Google Scholar
[19]
Yuan, S. M., Yan, L. T., Liu, W. D., & Liu, Q, Effects of cooling air temperature on cryogenic machining of Ti–6Al–4V alloy, Journal of Materials Processing Technology 211 (2011) 356-362. .
DOI: 10.1016/j.jmatprotec.2010.10.009
Google Scholar
[20]
Hamedon, Z., Mon, T. T., Sharif, S., Venkatesh, V. C., Masri, A. R. M., & Sue-Rynley, E, Performance of nitrogen gas as a coolant in machining of titanium, Advanced Materials Research 264 (2011) 962-966. .
DOI: 10.4028/www.scientific.net/amr.264-265.962
Google Scholar
[21]
Nath, C., Kapoor, S. G., DeVor, R. E., Srivastava, A. K., & Iverson, J. Design and evaluation of an atomization-based cutting fluid spray system in turning of titanium alloy, Journal of Manufacturing Processes 14 (2012) 452-459.
DOI: 10.1016/j.jmapro.2012.09.002
Google Scholar
[22]
Machai, C., Iqbal, A., Biermann, D., Upmeier, T., & Schumann, S, On the Effects of Cutting Speed and Cooling Methodologies in Grooving Operation of Various Tempers of β-Titanium Alloy, Journal of Materials Processing Technology (2013).
DOI: 10.1016/j.jmatprotec.2013.01.021
Google Scholar