[1]
Feng X, Liu T, Yang D, et al. Saliency inspired full-reference quality metrics for packet-loss-impaired video [J]. IEEE Transactions on Broadcasting, 2011: 57 (1): 81-88.
DOI: 10.1109/tbc.2010.2092150
Google Scholar
[2]
ITU-T Recommendation P. 910. Subjective video quality assessment methods for multimedia applications [S]. Geneva: International Telecommunication Inion, (1999).
Google Scholar
[3]
ITU-T Recommendation J. 148. Requirements for an objective perceptual multimedia quality model [S]. Geneva: International Telecommunication Inion, (2003).
Google Scholar
[4]
Narwaria M, Lin W, Liu A. Low-complexity video quality assessment using temporal quality variations [J]. IEEE Transactions on Multimedia, 2012: 14 (3): 525-535.
DOI: 10.1109/tmm.2012.2190589
Google Scholar
[5]
Zhang X, Wu L, Fang Y, et al. A Study of FR Video Quality Assessment of Real Time Video Stream [J]. International Journal, 2012: 3 (6): 1-7.
Google Scholar
[6]
Makar M, Lin Y C, de Araujo A F, et al. Compression of VQM features for low bit-rate video quality monitoring [A]. Proceedings of 2011 IEEE 13th International Workshop on Multimedia Signal Processing [C]. New York: Institute of Electrical and Electronics Engineers, 2011: 1-6.
DOI: 10.1109/mmsp.2011.6093809
Google Scholar
[7]
Babu R V, Bopardikar A S, Perkis A, et al. No-reference metrics for video streaming applications [A]. Proceedings of International Workshop on Packet Video [C]. New York: Institute of Electrical and Electronics Engineers, (2004).
Google Scholar
[8]
Yang Y, Lu Z, Wen X, et al. A No-Reference Video Quality Estimation Model over Wireless Networks [A]. Proceedings of 2011 IEEE Vehicular Technology Conference [C]. New York: Institute of Electrical and Electronics Engineers, 2011: 1-5.
DOI: 10.1109/vetecf.2011.6092829
Google Scholar
[9]
Wang B, Zou D, Ding R. Support Vector Regression Based Video Quality Prediction [A]. Proceedings of 2011 IEEE International Symposium on Multimedia [C]. New York: Institute of Electrical and Electronics Engineers, 2011: 476-481.
DOI: 10.1109/ism.2011.84
Google Scholar
[10]
Argyropoulos S, Raake A, Garcia M N, et al. No-reference bit stream model for video quality assessment of h. 264/AVC video based on packet loss visibility [A]. Proceedings of 2011 IEEE International Conference on Acoustics, Speech and Signal Processing [C]. New York: Institute of Electrical and Electronics Engineers, 2011: 1169-1172.
DOI: 10.1109/icassp.2011.5946617
Google Scholar
[11]
Christopher J C Burges. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998: 2 (2): 121-167.
Google Scholar
[12]
Yang Y, Lu Z, Wen X, et al. A transmission-aware video quality metric for lossy wireless network [A]. Proceedings of 2011 14th International Symposium on Wireless Personal Multimedia Communications [C]. New York: Institute of Electrical and Electronics Engineers, 2011: 1-5.
Google Scholar
[13]
Weston J, Watkins C. Multi-class support vector machines[R]. Technical Report CSD-TR-98-04, Department of Computer Science, Royal Holloway, University of London, May, (1998).
Google Scholar
[14]
Collobert R, Bengio S. SVMTorch: Support vector machines for large-scale regression problems[J]. The Journal of Machine Learning Research, 2001: 1: 143-160.
Google Scholar
[15]
ITU-R Recommendation BT. 500-11. Methodology for the subjective assessment of the quality of television pictures[S]. Geneva: International Telecommunication Inion, (2002).
Google Scholar