Strong N β-Compactness in L-Topological Spaces

Article Preview

Abstract:

In this paper,the new compactness which is strong-compactness is introduced for an arbitrary-subset and for a complete distributive De Morgan algebra. The strong-compactness implies strong-III-compactness,hence it also implies strong-II-compactness,strong-I-compactness,-compactness,-compactness and Lowen's fuzzy compactness. But it is different from-compactness.When ,strong-compactness is equivalent to-compactness.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 846-847)

Pages:

1278-1281

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Shi-Zhong Bai, -fuzzy-compactness. Int.J. Unc. Fuzz. Knowl. based Syst, 2002, 10: 201-209.

DOI: 10.1142/s0218488502001429

Google Scholar

[2] Shi-Zhong Bai, Pre-semiclosed sets and-convergence in-fuzzy topological spaces. J. Fuzzy. Math, 2001, 9: 497-509.

Google Scholar

[3] Shi-Zhong Bai, A new notion of fuzzy-compactness. Iranian Journal of Fuzzy Systems, 2008, 2: 79-86.

Google Scholar

[4] Shi-Zhong Bai,L. Fan and W.L. Wang, Strong-I-compactness in-topological spaces. International Conference on Fuzzy Systems and Knowledge Discovery, 2008, 1: 436-438.

DOI: 10.1109/fskd.2008.588

Google Scholar

[5] Shi-Zhong Bai, -Fuzzy-compactness. International Journal of Uncertainty, Fuzziness and Knowledge Systems, 2002, 10: 201-209.

Google Scholar

[6] Xiao-Dan He and Shi-Zhong Bai. Strong-III-compactness in-topological spaces. Granular Computing(Grc), IEEE International Conference on, 2012: 160-162.

DOI: 10.1109/grc.2012.6468594

Google Scholar

[7] S.G. Li, S.Z. Bai and N. Liu, The near-compactness axiom in-topological spaces. Fuzzy Sets and Systems, 2004, 147(2): 307-316.

DOI: 10.1016/j.fss.2003.09.003

Google Scholar

[8] R. Lowen, Fuzzy topological spaces and fuzzy compactness. Journal Mathemmatics Analysis Application, 1976, 56: 621-633.

DOI: 10.1016/0022-247x(76)90029-9

Google Scholar

[9] Fu-Gui Shi, A new notion of fuzzy compactness in-topological spaces. Information Sciences, 2005, 173: 35-48.

DOI: 10.1016/j.ins.2004.06.004

Google Scholar

[10] Fu-Gui Shi, -compactness in-topological Spaces. Tsing University Press, Beijing, 2005, 268-272.

Google Scholar

[11] Fu-Gui Shi, A new definition of fuzzy compactness. Fuzzy Sets and Systems, 2007, 158: 1486-1495.

DOI: 10.1016/j.fss.2007.02.006

Google Scholar

[12] Wang G.J., Theory of-fuzzy topological spaces. Xi'an china: Shaanxi Normal University Press, (1988).

Google Scholar

[13] C.Y. Zhang Y.P. Zuo and S.Z. Bai. Strong-II-compactness in-topological spaces. Springer Verlag Berlin, 2010, 82: 369-374.

Google Scholar