[1]
Feng S L, Dai H Z, Wang W S. Studies on the Physical Approach to Wind Power Prediction [Doctoral Dissertation]. China Electric Power Research Institute, Beijing, China, 2009 (In Chinese).
Google Scholar
[2]
Sanz S S, Perez A B, Ortiz E G., et al. Short-Term Wind Speed Prediction by Hybridizing Global and Mesoscale Forecasting Models with Artificial Neural Networks. The Eighth International Conference on Hybrid Intelligent Systems (HIS '08), 2008, 608-612.
DOI: 10.1109/his.2008.36
Google Scholar
[3]
Damousis I G, Alexiadis M C, Theocharis J B, et a1. A Fuzzy Model for Wind Speed Prediction and Power Generation in Wind Parks Using Spatial Correlation. IEEE Trans on Energy Conversion, 2004, 19(2): 352-361.
DOI: 10.1109/tec.2003.821865
Google Scholar
[4]
Gu X K, Fan G F, Wang X R, etc. Summarization of Wind Power Prediton Technology [J]. Power System Technology, 2007, 31(2): 335-338 (In Chinese).
Google Scholar
[5]
Tarek H M E, E Ehab F E, Magdy M A S. One Day Ahead Prediction of Wind Speed and Direction. IEEE Transaction on Energy Conversion, 2008, 23: 191-201.
DOI: 10.1109/tec.2007.905069
Google Scholar
[6]
Boone A. Simulation of short-term wind speed forecast errors using a multivariate ARMA(1, 1) time-series model. Stockholm, Sweden: Royal Institute of Technology, (2005).
Google Scholar
[7]
Cadenas E, Rivera W. Wind speed forecasting in the South Coast of Oaxaca, México. Renewable Energy, 2007, 32: 2116-2128.
DOI: 10.1016/j.renene.2006.10.005
Google Scholar
[8]
Bossanyi E A. Short-term wind prediction using Kalman filters. Wind Engineering, 1985, 9(1): 1-8.
Google Scholar
[9]
Lexiadis M A, Dokopoulo S P, Samanoglou S H, et a1. Short term forecasting of wind speed and related electrical power. Solar Energy, 1998, 63(1): 61-68.
DOI: 10.1016/s0038-092x(98)00032-2
Google Scholar
[10]
Kariniotakis G N, Stavrakakis G S, Nogaret E F. Wind power forecasting using advanced neural networks models. IEEE Trans on Energy Conversion, 1996, 11(4): 762-767.
DOI: 10.1109/60.556376
Google Scholar
[11]
Bilgili M, Sahin B, Yasar A. Application of artificial neural networks for the wind speed prediction of target station using reference stations data. Renewable Energy, 2007, 32: 2350-2360.
DOI: 10.1016/j.renene.2006.12.001
Google Scholar
[12]
Tang H, Niu D X. Combining simulate anneal algorithm with support vector regression to forecast wind speed. Second IITA International Conference on Geoscience and Remote Sensing, 2010, 92-94.
DOI: 10.1109/iita-grs.2010.5603274
Google Scholar
[13]
Zhao H, Li B, Zhao Z Q. Short-term wind speed forecasting simulation research based on ARIMA-LSSVM combination method. International Conference on Materials for Renewable Energy & Environment (ICMREE), 2011, 583-586.
DOI: 10.1109/icmree.2011.5930880
Google Scholar
[14]
Lu S, Makarov Y V, Brothers A J, et al. Prediction of power system balancing requirement and tail event. Transmission and Distribution Conference and Exposition 2010 IEEE PES, 2010, 1-7.
DOI: 10.1109/tdc.2010.5484347
Google Scholar
[15]
Yang J X, Chang X Q, Wang W Q, etc. Discussions on Prediction Accuracy of WInd Power Forcasting System [J]. Power system and Clean Energy, 2011, 27(1): 67-71 (In Chinese).
Google Scholar
[16]
Dutta S, Overbye T J. Prediction of Short Term Power Output of Wind Farms based on Least Squares Method. Power and Energy Society General Meeting 2010 IEEE, 2010, 1-6.
DOI: 10.1109/pes.2010.5590176
Google Scholar
[17]
Murugavel A K, Ranganathan N, Chandramouli R, Chavali S. Average power in digital CMOS circuits using least square estimation. Fourteenth International Conference on VLSI Design, 2001, 215-220.
DOI: 10.1109/icvd.2001.902663
Google Scholar
[18]
Tang G L, Qiu Y M. Improved least square method apply in ship performance analysis. The 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE), 2010, V5: 594-596.
DOI: 10.1109/icacte.2010.5579420
Google Scholar
[19]
Hayashi F. Econometrics. New Jersey, American: Princeton University Press, 2000, 15-18.
Google Scholar