Study of Coupling Factor for Wireless Power Link in Advanced Brain-Machine Interface

Article Preview

Abstract:

The inductive wireless power transfer efficiency is determined by the coupling factor and coil quality factors. This paper studies the coupling factor of an inductive power link (IPL) for wireless power transfer in advanced brain-machine interface applications. By comparison to the experimental results, the various design tools including Maxwell simulation and two analytical models are evaluated for prediction of the coupling factor. The coupling factors of IPLs with different design parameters are also analyzed. The results show that for specific wireless power transfer distances, the coupling factor of an IPL is mainly related to the size and fill ratio of the coils, while is almost independent of the coil track pitch, coil width/pitch ratio, and track thickness.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 846-847)

Pages:

893-897

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.A. Lebedev et al.: Trends. Neurosci. Vol. 29 (2006), p.536.

Google Scholar

[2] A.V. Nurmikko et al.: Proc. IEEE Vol. 98 (2010), p.375.

Google Scholar

[3] R.R. Harison et al.: IEEE J. Solid-State Circuits Vol. 42 (2007), p.123.

Google Scholar

[4] U. -M. Jow et al.: IEEE Trans. Biomed. Circuits Syst. Vol. 1 (2007), p.193.

Google Scholar

[5] G. Simard et al.: IEEE Trans. Biomed. Circuits Syst. Vol. 4 (2010), p.192.

Google Scholar

[6] M.V. Paemel: IEEE Solid State Circuits Mag. Vol. 3 (2011), p.47.

Google Scholar

[7] P.P. Mercier et al.: IEEE Trans. Circuits Syst. I, Reg. Papers Vol. 60 (2013), p.2263.

Google Scholar

[8] J.D. Simeral et al.: J. Neural Eng. Vol. 8 (2011), p.025027.

Google Scholar

[9] R.R. Harrison et al.: IEEE Trans. Neural Syst. Rehabil. Eng. Vol. 17 (2009), p.322.

Google Scholar

[10] R. Wu et al.: IEEE Electron Device Lett. Vol. 34 (2013), p.9.

Google Scholar

[11] J.M.L. -Villegas: IEEE Trans. Microw. Theory Techn. Vol. 48 (2000), p.76.

Google Scholar

[12] R. Wu et al.: IEEE Trans. Electron Devices Vol. 60 (2013), p.339.

Google Scholar

[13] W.G. Hurley et al.: IEEE Trans. Magn. Vol. 31 (1995), p.2416.

Google Scholar

[14] S. Raju et al.: IEEE Trans. Power Electron. Vol. 29 (2014), p.481.

Google Scholar

[15] R. Wu et al.: IEEE Electron Device Lett. Vol. 32 (2011), p.60.

Google Scholar

[16] R. Wu et al.: IEEE Trans. Power Electron. Vol. 27 (2012), p.4781.

Google Scholar