Synthesis and Characterization of Co3O4 Nanoflowers for Lithium Ion Batteries

Article Preview

Abstract:

The high capacity of Co3O4 nanoflowers (NFs) on Ni foam as anodes in Li ion batteries is reported in this paper. The NFs grown firmly on Ni foam is convenient for the construction of lithium ion batteries without any extra electrode preparation process. The NFs presents an initial discharge capacity of 811mAh g1 at a current of 1 C. Our facile solvothermal film growth technique offers an exciting opportunity for growth of metal oxide nanostructures on substrates with practical application in lithium ion batteries.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

147-150

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.G. Li, B. Tan, Y.Y. Wu. Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability[J]. Nano Letters, 2008, 8(1): 265-270.

DOI: 10.1021/nl0725906

Google Scholar

[2] G. Che, B.B. Lakshmi, E.R. Fisher, C.R. Martin. Carbon nanotubule membranes for electrochemical energy storage and production[J]. Nature, 1998, 393: 346-349.

DOI: 10.1038/30694

Google Scholar

[3] K.S. Shankar, A.K. Raychaudhuri. Growth of an ordered array of oriented manganite nanowires in alumina templates[J]. Nanotechnology, 2004, 15(9): 1312–1316.

DOI: 10.1088/0957-4484/15/9/034

Google Scholar

[4] W.J. Zhou, J. Zhang, T. Xue, D. D Zhao, H.L. Li. Electrodeposition of ordered mesoporous cobalt hydroxide film from lyotropic liquid crystal media for electrochemical capacitors[J]. Journal of Materials Chemistry, 2008, 18: 905–910.

DOI: 10.1039/b715070a

Google Scholar

[5] B. Varghese, T.C. Hoong, Z. Yanwu, M.V. Reddy, B.V.R. Chowdari, A.T.S. Wee, T.B.C. Vincent, C.T. Lim and C.H. Sow. Co3O4 nanostructures with different morphologies and their field-emission properties[J]. Advanced Functional Materials, 2007, 17(12): 1932–(1939).

DOI: 10.1002/adfm.200700038

Google Scholar

[6] T. Yu, Y.W. Zhu, X.J. Xu, Z.X. Shen, P. Chen, C.T. Lim, J.T.L. Thong, C.H. Sow. Controlled growth and field-emission properties of cobalt oxide nanowalls[J]. Advanced Materials, 2005, 17(13): 1595–1599.

DOI: 10.1002/adma.200500322

Google Scholar

[7] X.W. Lou, D. Deng, J.Y. Lee, L.A. Archer. Thermal formation of mesoporous single-crystal Co3O4 nano-needles and their lithium storage properties[J]. Journal of materials chemistry, 2008, 18: 4397-4401.

DOI: 10.1039/b810093d

Google Scholar

[8] Y. Lu, Y. Wang, Y.Q. Zou, Z. Jiao, B. Zhao, Y.Q. He, M.H. Wu. Macroporous Co3O4 platelets with excellent rate capability as anodes for lithium ion batteries[J]. Electrochemistry Communications, 2010, 12: 101–105.

DOI: 10.1016/j.elecom.2009.10.046

Google Scholar

[9] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries[J]. Nature, 2000, 407: 496-499.

DOI: 10.1038/35035045

Google Scholar

[10] X.X. Qing, S.Q. Liu, K.L. Huang, K.Z. Lv, Y.P. Yang, Z.G. Lu, D. Fang, X.X. Liang. Facile synthesis of Co3O4 nanoflowers grown on Ni foam with superior electrochemical performance[J]. Electrochimica Acta, 2011, 56: 4985-4991.

DOI: 10.1016/j.electacta.2011.03.118

Google Scholar

[11] D. Larcher, D. Bonnin, R. Cortes, I. Rivals, L. Personaz, J.M. Tarascon. Combined XRD, EXAFS, and mössbauer studies of the reduction by lithium of a-Fe2O3 with various particle sizes[J]. Journal of The Elcectrochemical Society, 2003, 150(12): 1643-1650.

DOI: 10.1149/1.1622959

Google Scholar

[12] F.M. Zhan, B.Y. Geng, Y.J. Guo. Porous of Co3O4 nanosheets with extraordinarily high discharge capacity for lithium batteries[J]. Chemistry-A European Journal, 2009, 15(25): 6169-6174.

DOI: 10.1002/chem.200802561

Google Scholar

[13] H.J. Liu, S.H. Bo, W.J. Cui, F. Li, C.X. Wang, Y.Y. Xia. Nano-sized cobalt oxide/mesoporous carbon sphere composites as negative electrode material for lithium-ion batteries[J]. Electrochimica Acta, 2008, 53: 6497–6503.

DOI: 10.1016/j.electacta.2008.04.030

Google Scholar