[1]
Y.G. Li, B. Tan, Y.Y. Wu. Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability[J]. Nano Letters, 2008, 8(1): 265-270.
DOI: 10.1021/nl0725906
Google Scholar
[2]
G. Che, B.B. Lakshmi, E.R. Fisher, C.R. Martin. Carbon nanotubule membranes for electrochemical energy storage and production[J]. Nature, 1998, 393: 346-349.
DOI: 10.1038/30694
Google Scholar
[3]
K.S. Shankar, A.K. Raychaudhuri. Growth of an ordered array of oriented manganite nanowires in alumina templates[J]. Nanotechnology, 2004, 15(9): 1312–1316.
DOI: 10.1088/0957-4484/15/9/034
Google Scholar
[4]
W.J. Zhou, J. Zhang, T. Xue, D. D Zhao, H.L. Li. Electrodeposition of ordered mesoporous cobalt hydroxide film from lyotropic liquid crystal media for electrochemical capacitors[J]. Journal of Materials Chemistry, 2008, 18: 905–910.
DOI: 10.1039/b715070a
Google Scholar
[5]
B. Varghese, T.C. Hoong, Z. Yanwu, M.V. Reddy, B.V.R. Chowdari, A.T.S. Wee, T.B.C. Vincent, C.T. Lim and C.H. Sow. Co3O4 nanostructures with different morphologies and their field-emission properties[J]. Advanced Functional Materials, 2007, 17(12): 1932–(1939).
DOI: 10.1002/adfm.200700038
Google Scholar
[6]
T. Yu, Y.W. Zhu, X.J. Xu, Z.X. Shen, P. Chen, C.T. Lim, J.T.L. Thong, C.H. Sow. Controlled growth and field-emission properties of cobalt oxide nanowalls[J]. Advanced Materials, 2005, 17(13): 1595–1599.
DOI: 10.1002/adma.200500322
Google Scholar
[7]
X.W. Lou, D. Deng, J.Y. Lee, L.A. Archer. Thermal formation of mesoporous single-crystal Co3O4 nano-needles and their lithium storage properties[J]. Journal of materials chemistry, 2008, 18: 4397-4401.
DOI: 10.1039/b810093d
Google Scholar
[8]
Y. Lu, Y. Wang, Y.Q. Zou, Z. Jiao, B. Zhao, Y.Q. He, M.H. Wu. Macroporous Co3O4 platelets with excellent rate capability as anodes for lithium ion batteries[J]. Electrochemistry Communications, 2010, 12: 101–105.
DOI: 10.1016/j.elecom.2009.10.046
Google Scholar
[9]
P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries[J]. Nature, 2000, 407: 496-499.
DOI: 10.1038/35035045
Google Scholar
[10]
X.X. Qing, S.Q. Liu, K.L. Huang, K.Z. Lv, Y.P. Yang, Z.G. Lu, D. Fang, X.X. Liang. Facile synthesis of Co3O4 nanoflowers grown on Ni foam with superior electrochemical performance[J]. Electrochimica Acta, 2011, 56: 4985-4991.
DOI: 10.1016/j.electacta.2011.03.118
Google Scholar
[11]
D. Larcher, D. Bonnin, R. Cortes, I. Rivals, L. Personaz, J.M. Tarascon. Combined XRD, EXAFS, and mössbauer studies of the reduction by lithium of a-Fe2O3 with various particle sizes[J]. Journal of The Elcectrochemical Society, 2003, 150(12): 1643-1650.
DOI: 10.1149/1.1622959
Google Scholar
[12]
F.M. Zhan, B.Y. Geng, Y.J. Guo. Porous of Co3O4 nanosheets with extraordinarily high discharge capacity for lithium batteries[J]. Chemistry-A European Journal, 2009, 15(25): 6169-6174.
DOI: 10.1002/chem.200802561
Google Scholar
[13]
H.J. Liu, S.H. Bo, W.J. Cui, F. Li, C.X. Wang, Y.Y. Xia. Nano-sized cobalt oxide/mesoporous carbon sphere composites as negative electrode material for lithium-ion batteries[J]. Electrochimica Acta, 2008, 53: 6497–6503.
DOI: 10.1016/j.electacta.2008.04.030
Google Scholar