Electrospinning of Polycaprolactone in Dichloromethane/Dimethylformamide Solvent System

Article Preview

Abstract:

Electrospinning of polycaprolactone (PCL) in a mixed solvent of dichloromethane (DCM)/dimethylformamide (DMF) with 1:1 volumetic mixing ratio was studied. The effects of solution concentration (5-30 %w/v), applied voltage (10-25 kV), solution flow rate (0.1-2.0 mL/h) and collecting distance (10, 20 cm) on fiber formation and morphology were investigated. The size of PCL fibers obtained were in the range of 10s nm-2.6 μm with either bead on string or smooth fiber morphology. In this study, the solution concentration strongly affected fiber size exponentially. The fiber size also increased with an increase in solution flow rate. The applied voltage and the collecting distance have no or minimal effect on PCL fiber size.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

337-342

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Fang, X. Wang, and T. Lin: Functional Applications of Electrospun Nanofibers, Nanofibers -Production, Properties and Functional Applications, In tech (2011), pp.287-326.

DOI: 10.5772/24998

Google Scholar

[2] Z-M. Huang, Y. -Z. Zhang, M. Kotaki, S. Ramakrishna : Composites Science and Technology Vol. 63 (2003), p.2223–2253.

Google Scholar

[3] J-S Park. Adv. Nat. Sci.: Nanosci. Technology Vol. 1 (2010) 043002 5pp.

Google Scholar

[4] A. Martins, R. L. Rails, and N. M. Neves : Electrospinning: processing technique for tissue engineering scaffolding.

Google Scholar

[5] L. V. der Schueren, B. De Schoenmaker : European Polymer Journal Vol. 47 (2011), p.1256–1263.

Google Scholar

[6] F. - L. Zhou, P. L. Hubbard, S. J. Eichhorn, G. J. M. Parker : Polymer Vol. 52 (2011), pp.3603-3610.

Google Scholar

[7] F. Crozier, A. -S. Duwez, C. Jérôme, A.F. Léonard, K. O. van der Werf, P. J. Dijkstra, M. L. Bennink : Acta Biomaterialia Vol. 8 (2012), p.218–224.

DOI: 10.1016/j.actbio.2011.08.015

Google Scholar

[8] F. Chen, C. N Lee, S. H. Teoh : Materials Science and Engineering C Vol. 27 (2007), p.325–332.

Google Scholar

[9] Z. X. Meng, W. Zheng, L. Li, Y. F. Zheng : Materials Science and Engineering C Vol. 30 (2010), p.1014–1021.

Google Scholar

[10] K. H. Lee, H. Y. Kim, M. S. Khil, Y. M. Ra, D. R. Lee : Polymer Vol. 44 (2003), p.1287–1294.

Google Scholar

[11] S.A. Theron, E. Zussmana, A.L. Yarin : Polymer Vol. 45 (2004), p.2017–(2030).

Google Scholar

[12] T. Amna, N. A.M. Barakat, M. S. Hassan, M. -S. Khil, H. Y. Kim : Colloids and Surfaces A: Physicochem. Eng. Aspects Vol. 431 (2013), p.1– 8.

Google Scholar

[13] P. Gupta, C. Elkins, T. E. Long, G. L. Wilkes : Polymer Vol. 46, 13 (2005), p.4799–4810.

Google Scholar

[14] N. Bhardwaj, S. C. Kundu : Biotechnology Advances Vol. 28 (2010), pp.325-347.

Google Scholar

[15] S. Sukigara, M. Gandhi, J. Ayutsede, M. Micklus, and F. Ko : Polymer Vol. 44 (2003), pp.5721-5727.

DOI: 10.1016/s0032-3861(03)00532-9

Google Scholar

[16] N. Kulpreechanan, T. Bunaprasert, S. Damrongsakkul, S. Kanokpanont, and R. Rangkupan : Advanced Materials Research Vol. 701 (2013), pp.420-424.

DOI: 10.4028/www.scientific.net/amr.701.420

Google Scholar