Numerical Investigation of Natural Convection of Nanofluids in L-Shaped Enclosures

Article Preview

Abstract:

This paper presents numerical investigations of the thermal and fluid flow behavior in an L-shaped of cavity filled with nanofluid. For this purpose, five different water based Cu nanoparticles were selected with concentration of 1%, 3% and 5% were used. Effects of the presence of nanoparticles on the thermal and fluid flow in the enclosure were investigated in different Rayleigh number (Ra = 103, 104 and 105). Results show that the characteristic of flow and heat transfer are mainly dependent on the dimensionless Rayleigh number. We also found that the presence of nanoparticle enhances the heat transfer rate in the enclosure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

391-396

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Shahi, A.H. Mahmoudi and F. Talebi: Numerical simulation of steady natural convection heat transfer in a 3-dimensional single-ended tube subjected to a nanofluid, Intl. Comm. Heat Mass Trans. Vol. 37 (2010), pp.1535-1545.

DOI: 10.1016/j.icheatmasstransfer.2010.08.005

Google Scholar

[2] E.A. Nada and F.O. Hakan: Effects of inclination angle on natural convection in enclosures filled with Cu–water nanofluid, Intl. J. Heat Fluid Flow Vol. 30 (2009), pp.669-678.

DOI: 10.1016/j.ijheatfluidflow.2009.02.001

Google Scholar

[3] M. Mahmoodi: Numerical simulation of free convection of nanofluid in a square cavity with an inside heater, Intl. J. Thermal Sci. Vol. 50 (2011), pp.2161-2175.

DOI: 10.1016/j.ijthermalsci.2011.05.008

Google Scholar

[4] M. Mahmoodi and M.H. Seyed: Numerical study of natural convection of a nanofluid in C-shaped enclosures, Intl. J. Thermal Sci. Vol. 55 (2012), pp.76-89.

DOI: 10.1016/j.ijthermalsci.2012.01.002

Google Scholar

[5] E. Fattahi, M. Farhadi, K. Sedighi and H. Nemati: Lattice Boltzmann simulation of natural convection heat transfer in nanofluids, Intl. J. Thermal Sci. Vol. 52 (2012) pp.137-144.

DOI: 10.1016/j.ijthermalsci.2011.09.001

Google Scholar

[6] M.A. Mansour, R.A. Mohamed, M.M. Abd-Elaziz and S.A. Ahmed: Numerical simulation of mixed convection flows in a square lid-driven cavity partially heated from below using nanofluid, Intl. Comm. Heat Mass Trans. Vol. 37 (2010), pp.1504-1512.

DOI: 10.1016/j.icheatmasstransfer.2010.09.004

Google Scholar

[7] S. Suresh, M. Chandrasekar and A.B. Chandra: Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid, Exp. Thermal Fluid Sci. Vol. 34 (2010), pp.210-216.

DOI: 10.1016/j.expthermflusci.2009.10.022

Google Scholar

[8] K. Khanafer, V. Kambiz and L. Marilyn: Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids, Intl. J. Heat Mass Trans. Vol. 46 (2003), pp.3639-3653.

DOI: 10.1016/s0017-9310(03)00156-x

Google Scholar

[9] G.H.R. Kefayati, S.F. Hosseinizadeh, M. Gorji and H. Sajjadi: Lattice Boltzmann simulation of natural convection in an open enclosure subjugated to water/copper nanofluid, Intl. J. Thermal Sci. Vol. 52 (2012), pp.91-101.

DOI: 10.1016/j.ijthermalsci.2011.09.005

Google Scholar

[10] T. Parametthanuwat, S. Rittidech and A. Pattiya: A correlation to predict heat-transfer rates of a two-phase closed thermosyphon (TPCT) using silver nanofluid at normal operating conditions, Intl. J. Heat Mass Trans. Vol. 53 (2010), pp.4960-4965.

DOI: 10.1016/j.ijheatmasstransfer.2010.05.046

Google Scholar

[11] W. Khwanchit and E. Smith: Heat transfer enhancement by using CuO/water nanofluid in corrugated tube equipped with twisted tape, Intl. Comm. Heat Mass Trans. Vol. 39 (2012), pp.251-257.

DOI: 10.1016/j.icheatmasstransfer.2011.11.010

Google Scholar

[12] A. Ghadimi, R. Saidur and H.S.C. Metselaar: A review of nanofluid stability properties and characterization in stationary conditions, Intl. J. Heat Mass Trans. Vol. 54 (2011), pp.4051-4068.

DOI: 10.1016/j.ijheatmasstransfer.2011.04.014

Google Scholar

[13] C. Saidi, F. Legay and B. Pruent: Laminar flow past a sinusoidal cavity, Intl. J. Heat Mass Trans. Vol. 30 (1987), p.649–660.

DOI: 10.1016/0017-9310(87)90195-5

Google Scholar

[14] M. Shohel, K.D. Prodip, H. Nasim and A.K.M. Sadrul Islam: Free convection in an enclosure with vertical wavy walls, Intl. J. Thermal Sci. Vol. 41 (2002), pp.440-446.

DOI: 10.1016/s1290-0729(02)01336-4

Google Scholar

[15] S.H. Tasnim and S. Mahmud: Laminar free convection inside an inclined L-shaped enclosure, Intl. Comm. Heat Mass Trans. Vol. 33 (2006), pp.936-942.

DOI: 10.1016/j.icheatmasstransfer.2006.05.008

Google Scholar

[16] R.B. Chinnakotla, D. Angirasa and R.L. Mahajan: Parametric study of buoyancy-induced flow and heat transfer from L-shaped corners with asymmetrically heated surfaces, Intl J. Heat Mass Trans. Vol. 39 (1996), pp.851-865.

DOI: 10.1016/0017-9310(95)00160-3

Google Scholar

[17] M. Mahmoodi: Numerical simulation of free convection of a nanofluid in L-shaped cavities, Intl. J. Thermal Sci. Vol. 50 (2011), pp.1731-1740.

DOI: 10.1016/j.ijthermalsci.2011.04.009

Google Scholar

[18] K. Mohammad, A. Abbas, S.A. Majid and H. Jens: Eulerian–Eulerian two-phase numerical simulation of nanofluid laminar forced convection in a microchannel, Intl J. Heat Fluid Flow Vol. 32 (2011), pp.107-116.

DOI: 10.1016/j.ijheatfluidflow.2010.08.001

Google Scholar

[19] D.A. Nield and A.V. Kuznetsov: The onset of double-diffusive convection in a nanofluid layer, Intl. J. Heat Fluid Flow Vol. 32 (2011), pp.771-776.

DOI: 10.1016/j.ijheatfluidflow.2011.03.010

Google Scholar