Low Band Gap Co80Ni20@RGO Nanocomposite

Article Preview

Abstract:

We report a novel approach of designing ordered arrangement of disorder on the extended structures of graphene. We prepared single phase nanoparticles of Co80Ni20 alloy embedded in Reduced Graphene Oxide (RGO). Co80Ni20 shows a large moment and a soft ferromagnetic character like permalloy at room temperature. Temperature dependence of permittivity shows a behavior quite contrary to usual ceramic materials showing an increase with decreasing temperature, exhibiting a maximum. A very large magnitude of permittivity ~ 5000 is observed, which is possibly related to an interesting Maxwell-Wagner type effect arising from the charge localization in the graphene sheets. For a deeper insight of the mechanism, correlations with other phenomena are studied through magnetization, dc resistivity, I-V etc. investigations. Temperature dependent magnetization indicates toward strong ferromagnetic interaction and MH loop shows low coercivity ferromagnetic interaction at 4 K and even at room temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

299-303

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. K. Geim: Science Vol. 324 (2009) p.1530.

Google Scholar

[2] K. S. Novoselov, V. I. Falko, L. Colombo, P. R. Gellert, M. G. Schwab: Nature Vol. 490 (2012), p.192.

Google Scholar

[3] Y. Zhu, D. K. James, J. M. Tour: Adv. Mater. Vol. 24 (2012), p.4924.

Google Scholar

[4] S. Roche: Nat. Nanotech. Vol. 6 (2011), p.8.

Google Scholar

[5] N. O. Weiss, H. Zhou, L. Liao, Y. Liu, S. Jiang, Y. Huang, X. Duan: Adv. Mater. Vol. 24 (2012), p.5782.

Google Scholar

[6] W. Y. Kim, K. S. Kim: Nat. Nanotech. Vol 3 (2008), p.408.

Google Scholar

[7] G. Liu, Y. Wu, Y.M. Lin, D.B. Farmer , J.A. Ott, J. Bruley, A. Grill, P. Avouris, D. Pfeiffer, A.A. Balandin, C. Dimitrakopoulos: Acs Nano. Vol 6 (2012), p.6786.

DOI: 10.1021/nn301515a

Google Scholar

[8] Z. Chen, Y.M. Lin, M. J. Rooks, P. Avouris: Physica E. Vol. 40 (2007), p.228.

Google Scholar

[9] L. C. Campos, V. R. Manfrinato , J. D. Sanchez-Yamagishi, Ji. Kong, P. Jarillo-Herrero: Nano Lett. Vol. 9 (2009), p.2600.

DOI: 10.1021/nl900811r

Google Scholar

[10] W. S. Hummers, R. E. Offeman: Am. Chem. Soc. Vol. 80 (1958), p.1339.

Google Scholar

[11] M. Thakur, M. Patra, S. Majumdar, S. Giri: Appl. Phys. Vol. 105 (2009), p.073905.

Google Scholar

[12] D. De, K. Dey, S. Majumdar, S. Giri: Solid State Commun. Vol. 152 (2012), p.1857.

Google Scholar

[13] D. De, S. Majumdar, S. Giri: J. Appl. Phys. Vol. 111 (2012), p.033919.

Google Scholar

[14] C. Kittel, (Wiley Eastern Limited, New Delhi, 1977), p.465.

Google Scholar

[15] S. D. Sarma, S. Adam, E. H. Hwang, E. Rossi: Rev. Mod. Phys. Vol. 83 (2011), p.407.

Google Scholar

[16] S. D. Sarma, E. H. Hwang: Solid State Commun. Vol. 135 (2005), p.579.

Google Scholar