Bone Marrow Cell Response on Carbonate Apatite/PCL-Coated α-Tricalcium Phosphate Foam

Article Preview

Abstract:

The aim of this research work was to investigate in vitro effect of the carbonate apatite/poly (ε-caprolactone) (CO3Ap/PCL) on α-tricalcium phosphate (α-TCP) foam was produced by sintering CaCO3 and CaHPO42H2O at 1500°C for 5 h. It was then coated with carbonate apatite (CO3Ap)/Poly-ε-caprolactone (PCL) (wt/wt=1/3) to improve both mechanical and biological properties. The initial cell attachment and proliferation of the bone marrow cells were carried out on the α-TCP and CO3Ap/PCL-coated α-TCP foams. The cell proliferation was calculated by AlamarBlue assay. The cells were able to migrate and proliferate well on both α-TCP and CO3Ap/PCL-coated α-TCP foams indicating an excellent biocompatibility. The incorporation of CO3Ap on the coating layer improved cellular attachment and accelerated proliferation. Thus, CO3Ap/PCL-coated α-TCP foam might be a promising candidate as implant material.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

7-12

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Dorozhkin, S., Journal of Materials Science 2009, 44, 2343-2387.

Google Scholar

[2] Dorozhkin, S.V. Epple, M., Angewandte Chemie International Edition 2002, 41, 3130-3146.

Google Scholar

[3] Hutmacher, D.W., Biomaterials 2000, 21, 2529-2543.

Google Scholar

[4] Kang, Y., Scully, A., Young, D.A., Kim, S., Tsao, H., Sen, M., et al., European Polymer Journal 2011, 47, 1569-1577.

Google Scholar

[5] Gauthier, O., Goyenvalle, E., Bouler, J.M., Guicheux, J., Pilet, P., Weiss, P., et al., Journal of Materials Science: Materials in Medicine 2001, 12, 385-390.

DOI: 10.1023/a:1011284517429

Google Scholar

[6] dos Santos, E.A., Farina, M., Soares, G.A. Anselme, K., Journal of Biomedical Materials Research Part A 2009, 89A, 510-520.

Google Scholar

[7] Roohani-Esfahani, S. -I., Nouri-Khorasani, S., Lu, Z., Appleyard, R. Zreiqat, H., Biomaterials 2010, 31, 5498-5509.

DOI: 10.1016/j.biomaterials.2010.03.058

Google Scholar

[8] Zhao, J., Lu, X., Duan, K., Guo, L.Y., Zhou, S.B. Weng, J., Colloids and Surfaces B: Biointerfaces 2009, 74, 159-166.

DOI: 10.1016/j.colsurfb.2009.07.012

Google Scholar

[9] Rezwan, K., Chen, Q.Z., Blaker, J.J. Boccaccini, A.R., Biomaterials 2006, 27, 3413-3431.

DOI: 10.1016/j.biomaterials.2006.01.039

Google Scholar

[10] Lee HJ, Kim SE, Choi HW, Kim CW, Kim KJSC., L., Euro Polym J 2007, 43, 1602-8.

Google Scholar

[11] Landi, E., Celotti, G., Logroscino, G. Tampieri, A., Journal of the European Ceramic Society 2003, 23, 2931-2937.

DOI: 10.1016/s0955-2219(03)00304-2

Google Scholar

[12] Landi, E., Tampieri, A., Celotti, G., Vichi, L. Sandri, M., Biomaterials 2004, 25, 1763-1770.

DOI: 10.1016/j.biomaterials.2003.08.026

Google Scholar

[13] Hasegawa, T., Miwa, M., Sakai, Y., Niikura, T., Lee, S.Y., Oe, K., et al., Journal of Dental Research 2010, 89, 854-859.

Google Scholar

[14] Wang, H., Li, Y., Zuo, Y., Li, J., Ma, S. Cheng, L., Biomaterials 2007, 28, 3338-3348.

Google Scholar

[15] Shi, X., Nakagawa, M., Kawachi, G., Xu, L. Ishikawa, K., Journal of Materials Science: Materials in Medicine 2012, 23, 1281-1290.

Google Scholar

[16] Narayan, R., Bandyopadhyay, A. Bose, S., eds. Biomaterials Science: Processing, Properties and Application. Ceramic Transactions. Vol. 228. 2011, Wiley.

Google Scholar

[17] Okada, S., Ito, H., Nagai, A., Komotori, J. Imai, H., Acta Biomaterialia 2010, 6, 591-597.

DOI: 10.1016/j.actbio.2009.07.037

Google Scholar