A Meshless Method for Advection-Diffusion Problems

Article Preview

Abstract:

This paper formulates a radial basis function meshless method for the numerical simulation of the advection-diffusion problems. The spatial derivatives are approximated by RBF collocation technique whereas the temporal derivatives are discretized using the Crank-Nicholson method. Corresponding boundary conditions are enforced analytically at a discrete set of boundary nodes. The performances of the present method are demonstrated through their application to an advection-diffusion problem.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 860-863)

Pages:

1594-1599

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Hundsdorfer, and J. G. Verwer, Springer: Verlag Berlin Heidelberg, (2003).

Google Scholar

[2] T. Belytschko, Y. Krongauz, and D. Organ, Meshless methods: An overview and recent developments,. Comput. Methods. Appl. Mech. Engrg. Vol. 139, p.3–47, (1996).

DOI: 10.1016/s0045-7825(96)01078-x

Google Scholar

[3] G. R. Liu, Mesh-Free Methods: Moving Beyond the Finite Element Method. CRC Press, Washington, (2003).

Google Scholar

[4] E. J. Kansa, Multiquadrics–A scattered data approximation scheme with applications to computational fluid–dynamics. I. Surface approximations and partial derivative estimates, Comput. Math. Appl. Vol. 19, p.127–45, (1990).

DOI: 10.1016/0898-1221(90)90270-t

Google Scholar

[5] E. J. Kansa, Multiquadrics–A scattered data approximation scheme with applications to computational fluid–dynamics. II. Solutions to parabolic, hyperbolic, and elliptic partial differential equations, Comput. Math. Appl. Vol. 19, p.147–61, (1990).

DOI: 10.1016/0898-1221(90)90271-k

Google Scholar

[6] K. Li, Q. B. Huang, J. L. Wang, and L. G. Lin, An improved localized radial basis function meshless method for computational aeroacoustics, Eng. Anal. Bound. Elem. Vol. 35, pp.47-55, (2011).

DOI: 10.1016/j.enganabound.2010.05.015

Google Scholar

[7] C. S. Huang, C. F. Lee, and A. H. D. Cheng, Error estimate, optimal shape factor, and high precision computation of multiquadric collocation method, Eng. Anal. Bound. Elem. Vol. 31, pp.614-623, (2007).

DOI: 10.1016/j.enganabound.2006.11.011

Google Scholar

[8] R. L. Hardy, Multiquadric equations of topography and other irregular surfaces, J. Geophys. Res. Vol. 76, pp.1905-1915, (1971).

DOI: 10.1029/jb076i008p01905

Google Scholar

[9] C. Franke, and R. Schaback, Solving partial differential equations by collocation using radial basis functions, Appl. Math. Comput. Vol. 93, pp.73-82, (1998).

DOI: 10.1016/s0096-3003(97)10104-7

Google Scholar

[10] P. W. Patridge, C. A. Brebbia, and L. W. Wroble, The dual reciprocity boundary element method. Computational Mechanics Publication: Southampton, (1992).

Google Scholar

[11] S. C. Borja, and F. T. C. Tsai, Non-negativity and stability analyses of lattice Boltzmann method for advection-diffusion equation, J. Comput. Phys. Vol. 107, pp.236-256, (2009).

DOI: 10.1016/j.jcp.2008.09.005

Google Scholar