[1]
Ehyaei M A, Mozafari A, Ahmadi A, et al. Potential use of cold thermal energy storage systems for better efficiency and cost effectiveness [J]. Energy and Buildings, 2010, 42(12): 2296-2303.
DOI: 10.1016/j.enbuild.2010.07.013
Google Scholar
[2]
Yau Y H, Lee S K. Feasibility study of an ice slurry-cooling coil for HVAC and R systems in a tropical building [J]. Applied Energy, 2010, 87(8): 2699-2711.
DOI: 10.1016/j.apenergy.2010.02.025
Google Scholar
[3]
Davies TW. Slurry ice as a heat transfer fluid with a large number of application domains [J]. International Journal of Refrigeration 2005, 28(1): 108–114.
DOI: 10.1016/j.ijrefrig.2004.07.008
Google Scholar
[4]
Kauffeld M, Wang M J, Goldstein V, et al. Ice slurry applications[J]. International Journal of Refrigeration, 2010, 33(8): 1491-1505.
DOI: 10.1016/j.ijrefrig.2010.07.018
Google Scholar
[5]
Kiatsiriroat T, Vithayasai S, Vorayos N, Nuntaphan A, Vorayos N. Heat Transfer prediction for direct contact ice thermal energy storage [J]. Energy Conversion and Management, 2003, 44(3): 497–508.
DOI: 10.1016/s0196-8904(02)00077-8
Google Scholar
[6]
Matsumoto K, Okada M, Kawagoe T, et al. Ice storage system with water–oil mixture formation of suspension with high IPF [J]. International Journal of Refrigeration, 2003, 23(2): 336–344.
DOI: 10.1016/s0140-7007(99)00073-0
Google Scholar
[7]
Wijeysundera NE, Hawlader MNA, Andy CWB, et al. Ice-slurry production using direct contact heat transfer [J]. International Journal of Refrigeration, 2004, 27(4): 511–519.
DOI: 10.1016/j.ijrefrig.2004.03.007
Google Scholar
[8]
Zhang X J, Qiu L M, Zhang P, et al. Performance improvement of vertical ice slurry generator by using bubbling device[J]. Energy Conversion and Management, 2008, 49(1): 83–88.
DOI: 10.1016/j.enconman.2007.05.020
Google Scholar
[9]
Egolf P W, Kauffeld M. From physical properties of ice slurries to industrial ice slurry applications [J]. International Journal of Refrigeration, 2005, 28(1): 4-12.
DOI: 10.1016/j.ijrefrig.2004.07.014
Google Scholar
[10]
Haid M, Martin H, Muller-Steinhagen H. Heat transfer to liquid–solid fluidized beds [J]. Chemical Engineering and Processing, 1994, 33(2): 211–225.
DOI: 10.1016/0255-2701(94)01003-x
Google Scholar
[11]
Jamialahmadi M, Malayeri MR, Muller-Steinhagen H. Prediction of heat transfer to liquid–solid fluidized beds [J]. Canadian Journal of Chemical Engineering, 1997, 73(4): 444–455.
DOI: 10.1002/cjce.5450730404
Google Scholar
[12]
Liang K F, Peng Z B, Yuan Z L. Energy analysis of ice-making process for liquid–liquid circulating fluidized bed [J]. Journal of Southeast University (Natural Science Edition) , 2006, 36(6): 774–779.
Google Scholar
[13]
Peng Z B, Liang K F, Yuan Z L. Numerical simulation and experimental study of liquid–liquid jet-flow atomization [J]. Journal of Engineering for Thermal Energy and Power, 2007, 22(2): 205–212.
Google Scholar
[14]
Kitanovski A, Vuarnoz D, Ata-Caesar D, et al. The fluid dynamics of ice slurry [J]. International Journal of Refrigeration , 2005, 28(1): 37–50.
DOI: 10.1016/j.ijrefrig.2004.07.010
Google Scholar
[15]
Saito A. Recent advances in research on cold thermal energy storage [J]. International Journal of Refrigeration, 2002, 25(2): 177-189.
DOI: 10.1016/s0140-7007(01)00078-0
Google Scholar
[16]
Peng Z B, Yuan Z L, Wu X, et al. Experimental study on drop formation in liquid–liquid fluidized bed [J]. Chemical Engineering Science, 2009, 64(6): 1249 -1259.
DOI: 10.1016/j.ces.2008.11.012
Google Scholar
[17]
Richards J R, Lenhoff A M, Beris A N. Dynamic breakup of liquid–liquid jets [J]. Physics of Fluids, 1994, 6(5): 2640–2655.
DOI: 10.1063/1.868154
Google Scholar
[18]
Liang K F, Peng Z B, Yuan Z L. Liquid–liquid atomized jet-flow characteristics and drop diameter distribution [J]. Journal of Engineering for Thermal Energy and Power, 2007, 22(3): 326–331.
Google Scholar
[19]
Basaran O. Small-scale free surface flows with breakup: drop formation and emerging applications [J]. AIChE Journal, 2002, 48(6): 1842–1848.
DOI: 10.1002/aic.690480902
Google Scholar
[20]
Umbanhowar P B, Prasad V, Weitz D A. Monodisperse emulsion generation via drop break off in a co-flowing stream[J]. Langmuir, 2000, 16(2): 347–351.
DOI: 10.1021/la990101e
Google Scholar