Techno Economic Evaluation of Biogas Integrated Parabolic Trough Solar Energy Combined Cycle

Article Preview

Abstract:

This paper presented a biogas-solar hybrid system and investigated the feasibility of using biogas to increase the enthalpy of parabolic trough collectors steam so as to increase the cycle efficiency and power production. High temperature anaerobic digestion (AD) was adopted to produce biogas by using corn straw, manure and sewage. Biogas fraction and energy-to-electricity efficiency were used to evaluate the biogas contribution to the electricity generation and the energy utilization efficiency based on off-design performance analysis respectively. A comprehensive levelized electricity cost (LEC) and life cycle assessment (LCA) for the hybrid system power production were performed. The simulation calculation results show that biogas utilization plays an important role in the decrease in systemic LEC and greenhouse gas emissions. Improvement is achieved in both of generation cost and greenhouse emissions for biogas-solar hybrid plant compared to solar-only plant.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 860-863)

Pages:

22-31

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] National Academy of Sciences (NAS): G-science academies statements (2012).

Google Scholar

[2] Information on www. eia. doe. gov.

Google Scholar

[3] M. Aneke, B. Agnew and C. Underwood: Appl. Therm. Eng., Vol. 31 (2011): 1825-1832.

Google Scholar

[4] J. Dersch, M. Geyer and U. Herrmann: Energy, Vol. 29 (2004): 947-959.

Google Scholar

[5] M.J. Montes, A. Rovira and M. Muñoz: Appl. Energy, Vol. 88 (2011): 3228–3238.

Google Scholar

[6] G. Taleghani and A. S. Kia: Renew. Energy, Vol. 30 (2005): 441–446.

Google Scholar

[7] A. Molino, F. Nanna and Y. Ding: Fuel, Vol. 103 (2013): 1003–1009.

Google Scholar

[8] Information on https: /sam. nrel. gov.

Google Scholar

[9] C. Duenas, I. Pilatowsky and R. J. Romero: Sol. Energy Mat. Sol. C., Vol. 70 (2001): 401-413.

Google Scholar

[10] S. A. Kalogirou: Energy, Vol. 27 (2002): 813-830.

Google Scholar

[11] J. Dersch, M. Geyer and U. Herrmann: Energy, Vol. 29 (2004): 947–959.

Google Scholar

[12] M. Abbas, B. Boumeddane and N. Said: J. Engineering and App., Vol. 4 (2009): 258-267.

Google Scholar

[13] Y. N. Blokhina, A. Prochnow and M. Plochl: Bioresour. Technol., Vol. 102 (2011): 2086-(2092).

Google Scholar

[14] M. Lantz: Appl. Energy, Vol. 98 (2012): 502-511.

Google Scholar

[15] G. Rebitzer, T. Ekvall and R. Frischknecht: Environ. Int., 2004, 30 (5): 701-720.

Google Scholar

[16] M. Poeschl, S. Ward and P. Owende: J. Clean. Prod. Vol. 24 (2012): 168-183.

Google Scholar

[17] C. Chevalier and F. Meunier: Appl. Therm. Eng., Vol. 25 (2005): 3025–3041.

Google Scholar

[18] V. Piemonte, M. De Falco and Pietro Tarquini: Sol. Energy, Vol. 85 (2011): 1101–1108.

Google Scholar

[19] E. Pihl, D. Kushnir and B. Sandén: Energy, Vol. 44 (2012): 944-954.

Google Scholar